21UB4C2DAP:DESIGN AND ANALYSIS OF ALGORITHM

Total Teaching Hours: 48

No. Of Lecture Hours/Week:03

Credits: 03

Max Marks:60

Course Objectives:

- Analyze the asymptotic performance of algorithms.
- Ability to analyze asymptotic runtime complexity of algorithms including formulating recurrence relations.
- Ability to understand and design algorithms using greedy strategy, divide and conquer approach, dynamic programming
- Demonstrate a familiarity with major algorithms and data structures.

Course Outcome:

At the end of this course student will:

CO1: Use divide-and-conquer techniques for solving suitable problems

CO2: Use greedy approach to solve an appropriate problem for optimal solution.

CO3: Apply dynamic programming approach to solve suitable problems

CO4: Understand the limitations of algorithm power and study how to cope with the limitations of algorithm power for various problems

UNIT 1	Teaching Hours :12

Introduction:

Algorithms, Fundamentals of Algorithmic problem solving, important problem types, fundamental data structures. Fundamentals of the Analysis of Algorithm Efficiency; The Analysis Framework, Asymptotic Notation and Basic Efficiency classes, Mathematical Analysis of Non-recursive and Recursive Algorithms, Empirical Analysis of Algorithms.

UNIT 2

Teaching Hours :12

Brute Force Method

Brute Force Method: Selection sort and bubble sort, sequential search, Brute-Force string Matching, Exhaustive search, Depth-First Search and Breadth-First Search.

Decrease and Conquer: Insertion sort, topological sorting, Algorithms for generating combinatorial objects, Decrease-by-a-constant-factor Algorithms.

Divide and Conquer: Merge sort, quick sort, binary tree traversals and related properties, strassens matrix multiplication.

UNIT 3	Teaching Hours :12
Space and Time Tradeoffs:	8
Space and Time Tradeoffs: sorting by counting, Input	Enhancement in string
matching; Hashing	
Dynamic programming: Binomial Coefficient, principle	of optimality, optimal
binary search trees, Knapsack problem and memory function	s, Warshall's and Floyds
Algorithms.	
Greedy technique: Prims Algorithm, Kruskals Algorithm	n, Bijkstras Algorithm,
Huffman Trees.	
UNIT 4	Teaching Hours :12
Limitations of Algorithm Power:	
and NP Complete Problems. Coping with the Limitations of A Back Tracking: n queens problem, Hamiltonian Circu problem. Branch-and-bound: Assignment problem, Knapsack Probl Problem	Algorithm Power it problem, subset-sum em, Traveling Salesman
Text Books:	
 Anany Levitin, "Introduction to the Design and Analysia Edition, Pearson 2012. Horowitz, sahni, Rajasekaran, "Fundamentals of Comput Universities Press, 2007. 	s of Algorithms," 3 rd ter Algorithms", 2/e,
Reference Text Books:	
 Thomas H Cormen, Charles E Leiserson, Ronald L "Introduction to Algorithms", 3rd Edition, The MIT Pre A. V. Aho J E. Hopcroft, J D Ullmann, "The design an Algorithms", Addison Wesley Boston, 1983. Jon Kleinberg, Eva Tardos, "Algorithm Design", Pears 	A Rivest, Clifford Stein, ess 2009. Ind Analysis of Computer son Education, 2006

21UB3C1CNT: COMPUTER NETWORKS

Total Teaching Hours : 52

No. Of Lecture Hours/Week:4

Max Marks:70

Course Objective:

- To understand the protocol layering and physical level communication.
- To analyse the performance of a network
- To learn the functions of network layer and the various routing protocols.
- To familiarize the functions and protocols of the Transport layer

Course Outcome :

On successful completion of this course the students will be able to

CO1: Explain the importance of data communications and the Internet in supporting business communications and daily activities.

C02: Explain how communication works in data networks and the Internet.

CO3: Analyze the services and features of the various layers of data networks. .

CO4: Analyze the features and operations of various application layer protocols such as Http, DNS, and SMTP.

UNIT 1

Teaching Hours :12

Introduction: Data communications, Components, Data representation ,Data flow Networks: Network criteria, Network types, Internet history

Network Models: Protocol layering, TCP/IP protocol suite, The OSI model.

Introduction to Physical layer: Transmission impairment, Data rate limits, performance. **Introduction** to Data Link Layer :Link Layer Addressing

UNIT 2

Teaching Hours :12

Data link Control :Datalink Layer Protocols, HDLC, Point –To-Point(PPP), Media Accesses Control (MAC), ALOHA, CSMA, CSMA/CD, CSMA/CA, Reservation, Polling, Token Passing, FDMA, TDMA, CDMA

UNIT 3

Teaching Hours :12

Introduction to the Network Layer: Network layer services, packet switching, network layer performance, IPv4 address.

Network layer protocols: Internet Protocol(IP), ICMPv4, Mobile IP **Unicast Routing**: Routing algorithms, , Unicast routing protocols **Next** generation IP: IPv6 addressing.

UNIT 4:	Teaching Hours :12	
Introduction to the Transport Layer: Introduction, Transport layer protocols, User		
datagram protocol, Transmission control protocol, TCP services, TCP Features, Segment,		
A TCP connection, TCP congestion control, Flow Control, Error Control		
Application Layer: World wide web, Electronic mail, Domain name system		
Quality of services: Flow Control to implement QoS, Integrated services.		
Text Books:		
 Data Communication and Networking Behrouz A. Forouzan Tata Edition 2013 	a McGraw Hill Fifth	
Web Reference		

- 1. https://www.geeksforgeeks.org/computer-network-tutorials/
- 2. https://codescracker.com/networking/index.htm
- 3. <u>https://www.youtube.com/watch?v=3QhU9jd03a0</u>

Reference Text Books:

- 1. Computer Networks Andrew Tanenbaum David J Whetherall Printice Hall Fifth Edition 2013
- 2. Kurose, Ross (2012), Computer Networking: A top down approach, Pearson Education, India 5th Edition

: COMPUTER NETWORKS LAB

- Execute the following commands arp, ipconfig, hostname, netdiag, netstat, nslookup, pathping, ping route, tracert.
- 2. Study of different types of network cables.
- Practically implement the cross-wired cable and straight wired cable using crimping tool.
- Study of network IP address configuration(Classification of address, static and dynamic address)
- Study of netwok IP address configuration (IPv4 and IPv6, subnet, supernet)
- 6. Study of network devices (Switch, Router, Bridge)
- 7. Configure and Connect the computer in LAN
- 8. Block the website using "Windows Defender Firewall" in windows 10
- Share the folder in the system and access the files of that folder from other system using IP address.
- 10.Share the printer in Network, and take the print from OTHER pc.
- 11.Configuration of WiFi hotspot and connect other devices (mobile/laptop)
- 12.Configuration of switches.
- 13.Configuration of I/O box fixing.
- 14. Making your own patch card.
- 15.Configuration of VLAN using Packet tracer/GNS3.
- 16.Configuration of VPN using Packet tracer/GNS3.

References:

1. Paul Browning "101CompTIA Networks, 2018, Reality press ltd.

OPERATING SYSTEM

Total Teaching Hours: 48

No. Of Lecture Hours/Week: 03

Max Marks: 60

Credits : 3

Course Objective:

- To make the computer system convenient to is in an efficient manner.
- To hide the details of hardware resources from the users.
- To provide users a convenient interface to use the computer system.

Course Outcome:

CO1: Understand the basic computer operating system, interaction among the various components.

CO2: Learn the concepts of file management system.

CO3: Validate the policies for scheduling deadlock, memory management and security.

CO4: Analyze the features of file system, distributed system concepts.

Teaching hours :12

Introduction: Computer System Organization, Architecture, Structure, Operations, Process Management, Memory Management, Storage Management, Kernel Data Structures, Computing Environments. **Operating System Structures**: Services, System Calls, Types, Operating System Structure, System Boot. Processes: Process Concept, Scheduling, Operations, Interprocess Communication, Multithreaded Programming, Multithreading Models.

UNIT 2:

Teaching Hours :12

Process Synchronization: The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Example. **Process Scheduling:** Criteria, Scheduling Algorithms, Multi-Processor Scheduling, Real-time CPU Scheduling. **Deadlocks**: System model, Characterization, Methods for handling deadlocks, Deadlock Prevention, Avoidance, Detection and recovery from deadlock.

UNIT 3:	Teaching Hours :12
Memory Management Strategies: Background, Swapping, G	Contiguous Memory
Allocation, Segmentation, Paging, Structure of the page table.	Virtual Memory
Management: Demand Paging, Copy-on-Write, Page Replace	ement, Allocation of
Frames, Thrashing, Memory-Mapped files, Allocating Kernel	Memory. File System:
File Concept, Access Methods, Directory and Disk Structure,	Protection. File System
Implementation: Structure	

UNIT 4:

Teaching Hours 12

File-System and Directory Implementation, Allocation Methods, Free Space Management, Efficiency and Performance, Recovery, Mass-Storage Structure: Overview, Disk Scheduling, Disk Management. Distributed System: Advantages, Types of Network-based OS, Robustness, Design Issues, Distributed File Systems, Case Studies: The Linux System, Windows 10 (Process, Memory, Storage Management)

Essential Text Book:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: "Operating Systems Concepts", 9th Edition, 2016 India, Wiley.

Reference Text Books:

- 1. Wiliam Stallings, "Operating Systems- Internals and Design Principles", Pearson, IX Edition, 2018
- 2. D.M Dhamdhere: Operating System- A Concept Based Approach, III edition, Tata McGraw Hill,2015
- 3. Harvey M Deitel, Paul J Deitel, DrChoffines, "Operating System", Pearson Education Limited (Publisher), 3rd Edition.

PYTHON PROGRAMMING

Total Teaching Hours : 48

No. Of Lecture Hours/Week:03

Max Marks:60

Course Objective:

- Learn the syntax and semantics of Python programming language.
- Illustrate the process of structuring the data using lists, tuples, and dictionaries.
- Demonstrate the use of built-in functions to navigate the file system.
- Implement the Object-Oriented Programming concepts in Python.
- Demonstrate the use of Regular Expression and handling file operations

Course Outcome:

CO1: Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.

CO2: Express proficiency in the handling of strings and functions.

CO3: Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples, and sets.

CO4: Identify the commonly used operations involving file systems and regular expressions.

CO5: Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.

UNIT 1		Teaching Hours :12

Introduction to Python Programming Language

Python Interpreter/Shell, Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence, Data types, Indentation, Comments, Reading Input, Print Output, Type Conversions, The type() Function and Is operator. Dynamic and Strongly Typed Language.

Control Flow Statements: Selection, Iteration, Jump statements.

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the Function, The return Statement and void Function. Scope and Lifetime of Variables, Default Parameters.

Strings: Creating and Storing Strings. Basic String operations, Accessing Characters in StringbyIndexNumber, String Slicing and Joining, String methods.

UNIT 2

Teaching Hours :12

LISTS, Dictionaries, Tuples and Sets

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

Dictionaries: Creating Dictionary, Accessing and Modifying key: value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Tuple Methods.

UNIT 3

Teaching Hours:12

Files and Object-Oriented Programming

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Reading and Writing CSV Files.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python,
Creating Objects in Python, The Constructor Method, Classes with Multiple Objects,
Class Attributes versus Data Attributes, Encapsulation, Inheritance, Polymorphism.UNIT 4Teaching Hours :12

Data Visualization

Data Visualization: Generating Data-installing Matplotlib, plotting a Simple LineGraph, Random Walks, Rolling Dice with Plotly. Downloading Data- The CSV FileFormat. Working with dataset and implementation of different graphs.Text Books:

1. Gowrishankar S, Veena A, "Introduction to Python Programming", 1st Edition, CRC Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372

Reference Text Books:

- 1. Jake VanderPlas, "Python Data Science Handbook: Essential Tools for Working with Data", 1 st Edition, O'Reilly Media, 2016. ISBN-13: 978-1491912058
- 2. AurelienGeron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st Edition,O'Reilly Media, 2017. ISBN 13: 978-1491962299.
- 3. Wesley J Chun, "Core Python Applications Programming", 3 rd Edition, Pearson Education India, 2015. ISBN-13: 978-9332555365
- 4. Miguel Grinberg, "Flask Web Development: Developing Web Applications with Python", 2nd Edition, O'Reilly Media, 2018. ISBN-13: 978-1491991732.

21UB4C3ITT INTERNET TECHNOLOGIES

Total Teaching Hours: 48	No. Of Lecture
	Hours/Week:03
Max Marks:60	Credits: 03
Course Objective:	

• To introduce the fundamentals of Internet, and the principles of web design.

- To construct basic websites using HTML and Cascading Style Sheets.
- To build dynamic web pages with validation using Java Script objects and by applying different event handling mechanisms.
- To develop modern interactive web applications using JSP, Bootstrap ,Angular JS

Course Outcome:

At the end of this course, the students will be able to

CO1: Understand the concepts of World Wide Web.

CO2: Design web pages using the HTML and CSS features with different layouts.

CO3: Development of Web Sites.

CO4: Analysis of Web Sites with dynamic web pages and static web pages.

UNIT 1

Teaching Hours :12

INTER Connected NETwork

Internet: The giant wide area network, comminuting over the internet, accessing the internet, internet organization, cyber ethics

Internet Applications: Internet services, electronic mail(email),File Transfer, Real time user communication, Remote Login, Usenet

Word wide Web: The Web, The working Web, Web Terminology, Web ArchitectUNIT 2Teaching Hours :12

Hypertext Transfer Protocol(HTTP)

HTTP,HTTP version, HTTP connections ,HTTP Communication, Hypertext Transfer Protocol Secure

Hypertext Transfer Protocol State Retention :Cookies, Hypertext Transfer Protocol cache,

Evolution of Web: The Generations of Web, Web1.0, Web 2.0, Web 3.0

Big Data: A special discussion

Web IR: Information Retrieval on the web, Web Information Retrieval Tools Web Information Retrieval Architecture, Web Information Retrieval Performance Models, Google Page Rank

UNIT 3	Teaching Hours :12
Web Development Basics	
Elements of Web Element, lent side and Server side Scripting Architecture foe Web Application Development Client-Side Technologies: HTML Hypertext Markup Langua CSS: Cascading Style Sheets, Java Script, Bootstrap Fr Framework, Server-Side Technologies: Server-side Scripting, Personal He	g ,Model View Controller age ramework, Angular JS
Node js, Server-Side Java Script	
UNIT 4	Teaching Hours :12
Web Application Frame Work	
Web Databases: Web Database, Structured Query Language, Relational Data Vases, No Sql Database, Non-Relational and Distributed Data, Understanding Popular Databases Research Trends On the Web Contextual Information Retrieval, Web Mining.	
Text Books:	
1. Akshi Kumar ,"web Technology: Theory and Practice", CRC Press,2019	
Reference Text Books:	
 Web Technology: A Developer Perspective., N P Gop ,PHI ,Learning, Delhi Internetworking Technologies ,An Engineering Persp PHI Learning Delhi 2011 	alan and J Akilandeswari pective, Rahul Banerjee,

(21UB4C3ITP) Internet Technologies Lab

- 1. Demonstrate E-Mail working (Sending, Receiving, Forward).
- 2. How to create, organize meeting in Zoom/Googlemeet.
- 3. Create a form by using various attributes of the input tags (text box, multiline textbox, option button, check box).
- 4. Create a simple HTML page by using some of the basic tags(hyperlink, marquee, image).
- 5. Create a web page with multiple types of style sheet used in a single page.
- 6. Write a CGI sample program to send output back to the user.
- 7. Create a Time-Table using table tag.
- 8. Creation of frames in browser window using HTML.
- 9. Write a java script program to create dialogue boxes using alert, confirm and prompt methods.
- 10. Write a java script program to form Validators.
- Write a java script program to perform four arithmetic operations: Addition, Subtraction, Multiplication and Division on two numbers.
- 12. Create a web site of our College.

SOFTWARE ENGINEERING

Total Teaching Hours: 48

Credits: 03

Max Marks:60

Course Objective:

- To provide the idea of decomposing the given problem into Analysis, Design, Implementation, Testing and Maintenance phases.
- To provide an idea of using various process models in the software industry according to given circumstances.
- To gain the knowledge of how Analysis, Design, Implementation, Testing and Maintenance processes are conducted in a software project.

Course Outcome:

CO1: To understand and apply software engineering life cycle.

CO2: Demonstrating competence in communication, planning, analysis, design, construction and deployment.

CO3: Ability to apply and work on one or more significant application domains.

CO4: Analyze and able to work as individual and as a part of multidisciplinary team to develop and deliver quality software.

UNIT	1

Teaching Hours :12

Introduction to Software Engineering

Evolution and impact of software engineering, software life cycle models: Waterfall, prototyping, Evolutionary and spiral models. Feasibility study, functional and Non-functional requirements, Requirements gathering, Requirements analysis and specification.

Agile Development: Agile, Agility and cost of change; Agile process, extreme programming; other agile process models.

UNIT 2

Teaching Hours :12

Formal Modeling and Verification

The cleanroom strategy; Functional specification; cleanroom design; cleanroom testing; formal methods: concepts; Applying mathematical notation for formal specification; formal specification languages. Software project management; The management spectrum; The management of people, product, process and project; The W5HH principle; critical practices.

Software testing strategies: A strategic approach to software testing, test strategies for conventional software, test strategies for object-oriented software, test strategies for WebApps, System testing, software testing fundamentals, white-box testing, blackbox testing.

UNIT 3	Teaching Hours :12
Software Project Scheduling:	
Basic concepts and principles of project scheduling; defining scheduling; earned value analysis. Risk management: H strategies; software risks; risk identification; Risk projecti mitigation, monitoring and management; The RMMM Reengineering; software maintenance; software suppo Business process reengineering; software reengineering Restructuring; Forward engineering; The economics of reen	g task set and task network; Reactive versus proactive on; Risk refinement; Risk I plan, maintenance and ortability; Reengineering; ng; Reverse engineering; ngineering.
UNIT 4	Teaching Hours :12
Software Process Improvement (SPI)	
other SPI frameworks; SPICE, Bootstrap, PSP and T investment. Software configuration Management (SCM repository; The SCM process; Configuration management f standards	(SP, ISO; SPI return on (); Basic concepts; SCM (for web applications; SCM
Text Books:	
 Fundamentals of Software Engineering by Rajib Mall, 1 Roger S. Pressman, "Software Engineering: A Prac Alternate Edition, 7th Edition, McGraw Hill, 2010. 	PHI- 3 rd Edition, 2009. etitioner's Approach",
Reference Text Books:	
 Software Engineering, by Ian Sommerville, Pearson (2009). Software Engineering: A Practitioner's Approach 	Education Inc., New Delhi
McGraw-Hill (2005).	
3. Pankaj Jalote, "An Integrated Approach to software Engineering", Narosa Publishing House PVT Ltd, Darya Ganj, New Delhi 110002	