

The National College

Department of Post-Graduate Studies in Physics Jayanagar, Bangalore-70

Approved Syllabus for M.Sc. Physics OBE- CBCS Scheme Effective from 2021-2022 Academic Year

Details of the Courses and Credits for the four Semesters:

Semester	Theory (Hardcore)	Credits	Theory Soft Core/Open Elective	Credits	Labs	Credits	Total
I	4	$4 \times 4 = 16$	Soft core-1	$1 \ge 2 = 2$	2	$\begin{array}{r} 2 \times 4 \\ 8 \end{array}$	26
II	4	$4 \times 4 = 16$	Soft core-1	$1 \times 2 = 2$	2	$2 \times 4 = 8$	26
III	4	4 x 4 = 16	Open Elective and Project	$1 \times 2 = 2$	2	$2 \times 4 = 8$	26
IV	4	$4 \times 4 = 16$	Project	$1 \ge 2 = 2$	1	$\begin{array}{l}1 \times 4 \\ 4\end{array}$	22
	Tota	al number of	credits for the 4 Se	mester M.S	Sc. cour	se	100

Total Marks for the 4 semester: I Semester – 700 marks II Semester – 700 marks III Semester – 700 marks IV Semester – 600 marks

Grand Total -- 2700 marks

COURSE DETAILS:

I Semester: 4 Theory (Hardcore) + 1 Theory (soft core) + 2 Labs = 26 credits

Paper Code	Paper Title	Credits	Exam Max. Marks	Internal Assessment marks	Total
P 101	Classical Mechanics	4	70	30	100
P 102	Electronic Circuits and Devices	4	70	30	100
P 103	Quantum Mechanics- I	4	70	30	100
P 104	Mathematical Methods of Physics	4	70	30	100
P 105	Soft Core : Experimental Techniques in Physics	2	70	30	100
P 106 a	General Physics Lab-1	2	35	15	50
P 106 b	General Physics Lab-2	2	35	15	50
P 107 a	Electronics Lab 1	2	35	10	50
107 b	Electronics Lab 2	2	35	15	50

Total Marks: 700

II Semester: 4 Theory (Hardcore) + 1Theory (soft core) + 2 Labs = 26 credits

Paper Code	Paper Title	Credits	Exam Max. Marks	Internal Assessment marks	Total
P 201	Statistical Mechanics & Thermodynamics	4	70	30	100
P 202	Electrodynamics& Plasma Physics	4	70	30	100
P 203	Quantum Mechanics- II	4	70	30	100
P 204	Numerical Analysis and Computational	4	70	30	100
	Physics				
P 205	Soft Core : Radiation Biophysics & Medical Instrumentation	2	70	30	100
P 206 a	General Physics Lab-3	2	35	15	50
P 206 b	General Physics Lab-4	2	35	15	50
P 207 a	Computer Lab 1	2	35	15	50
P 208 b	Computer Lab 2	2	35	15	50

Total Marks: 700

Paper	Paper Title	Credits	Exam	Internal	Total
Code			Max.	Assessment	
			Marks	marks	
P 301	Atomic and Molecular Physics	4	70	30	100
P 302	Condensed Matter Physics	4	70	30	100
P 303	Nuclear and Particle Physics	4	70	30	100
P 304	Elective-1 (One course to be opted from the group)	4	70	30	100
	P304-E1 : Atmospheric & Space Physics				
	P304-E2 : Material Science				
	P 304-E3: Astrophysics				
P 305	Open Elective	4	70	30	100
	Understanding the physical world				
P 306 (a)	Advanced Physics Lab-I	2	35	15	50
(-)					
P 306 (b)	Advanced Physics Lab-I	2	35	15	50
P 307	Project	2	100		100
				Total Marks	700

III Semester: 4Theory (Hardcore) + 1Theory (Open elective) + 2 Lab = 24 credits

IV Semester: 4 Theory (Hardcore) + 2 Lab = 24 credits

Paper Code	Paper Title	Credits	Exam Max. Marks	Internal Assessment marks	Total
P 401	Lasers and Non-Linear Optics	4	70	30	100
P 402	Elective-2(one course to be opted from the group) P402-E4: Advanced Atomic, Molecular and Optical Physics P402-E5: Advanced Materials Science P402-E6: Advanced Mathematical Methods of Physics P402 E7: Advanced Nuclear and Neutron Physics	4	70	30	100
Р 403	Elective-3 (One course to be opted from the group) P403-E8: Space and Cloud Physics P403-E9: Physics of Solids P403-E10:Crystal and Semiconductor Physics	4	70	30	100
P 404	Electives-4 (One course to be opted from the group) P404-E11: Properties And Applications Of Thin Films P404-E12: Physics of Nanomaterials P404-E13: Photonics	4	70	30	100
P 405 (a)	Advanced Physics Lab-II	2	35	15	50
P 405 (b)	Advanced Physics Lab-II	2	35	15	50
P 406	Project	4	100		100
		22		Total Marks	600

Learning Outcomes

The key learning outcomes of our course are: knowledge and understanding of the concepts, logical as well as abstract thinking and analytical approach, experimental and computational skills, research methodology, values and positive attitude.

Postgraduates should have developed following qualities

Sl.	Programme Outcomes
No.	
1.	Understanding of basic and advanced concepts in Physics
2.	Theoretical and practical skills along with problem solving ability
3.	Logical, abstract thinking and analytical approach
4.	Ability to apply acquired knowledge and skills to the new and unknown situations to
	develop new theories, experiments, and technology
5.	Understand the nature in a better way
6.	Understand and appreciate the nuances and beauties in science education
7.	Tenacity, hardworking and ability to work against odds
8.	A new perspective to look at everything from 'Physics' point of view
9.	Get introduced to work environment at industrial scale and at research level
10.	Awareness of the impact of Physics in social, economic and environmental issues.
11.	Willingness to take up responsibility in study and work; confidence in his/her
	capabilities; and motivation for life-long learning.

I SEMESTER

Paper Code: P101					
Paper Title: Classical Mechanics					
Number of Credits: 04					
Course O	utcomes:	Suggested Pedagogical Processes:			
After the will be al 1. Setup solve expos Hamil 2. Applic and b 3. The m partic param force 4. Study in tur	completion of the course, students ole to: Lagrangian, for the system and able to equations of motion. Further they are ed to simply the equations using tonian and Canonical Transformations. cation of Eulers equation like geodesics rachistochrone problem. hacroscopic and microscopic orbits of les and hence evaluate certain heters that are conserved in the Central field. the concept of moment of inertia which in describe the nature of motion of	 Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solvin Hands on experiments related to co Pre-recorded lectures & Open book Study visits at facility centers at uninational research institutes. Seminars on different topics 	ls. g methods urses. tests versities and		
plane	us. Title and Cont	ent	No of		
		ent	Lecture Hours		
Unit I	Classical Formalism		13 Hours		
	 Lagrangian Formulation: Constraints and their classification, degrees of freedom, generalized co-ordinates, virtual displacement, D'Alembert's principle, Lagrange's equations of motion of the second kind. Hamiltonian formulation: Generalized momenta, canonical variables, Legendre transformation and the Hamilton's equations of motion. Canonical transformation: Generating functions (four basic types), examples of canonical transformations, the harmonic oscillator in one dimension, Poisson brackets, equations of motion in terms of Poisson brackets, properties of Poisson brackets (anti-symmetry, linearity and Jacobi identity), Poisson brackets of angular momentum 				
	Calculus of variations and Non-linear i	methods: Concept of variation, Euler's	13 Hours		
Unit-II	equation, Missing dependent variables, A Several independent variables, Hamilton' Lagrangian multipliers, Examples. Autono fixed points, their classification, phase sp logistic map	pplications of the Euler equation, 's principle and Lagrange's equations, omous and non-autonomous systems, ace trajectories, limit cycle motion,	12.11		
Unit-III	Central forces & Non- central Forces: Reduction of two particle equations of motion to the equivalent one-body problem, reduced mass of the system, conservation theorems (First integrals of the motion), equations of motion for the orbit, classification of orbits, conditions for closed orbits, the Kepler problem (inverse square law force).13 HoursMotion in non-central reference frames: Motion of a particle in a general non-inertial frame of reference, notion of pseudo forces, equations of motion in a rotating frame of reference, the Coriolis force, deviation due east of a falling body, the Foucault pendulum13 Hours				
Unit-IV	Rigid body dynamics : Degrees of freedo momentum and kinetic energy of a rigid principal moments of inertia, classificatic symmetric and asymmetric, Euler's equat free motion of a rigid body.	om of a free rigid body, angular body, moment of inertia tensor, on of rigid bodies as spherical, tions of motion for a rigid body, Torque	13 Hours		

	Small oscillations: Types of equilibria, quadratic forms for kinetic and potential energies of a system in equilibrium, Lagrange's equations of motion, normal modes and normal frequencies, examples of (i) longitudinal vibrations of two coupled harmonic oscillators, (ii) Normal modes and normal frequencies of a linear, symmetric, triatomic molecule.				
Refere	nces				
1.	Classical mechanics, H. Goldstein, C. Poole, J. Saflco, 3rd edition, Pearson Education Inc.(2002).				
2.	Classical mechanics, K. N. Srinivasa Rao, University Press (2003).				
3.	Classical mechanics, N. C. Rana and P. S. Joag, Tata McGraw-Hill (1991).				
4.	Classical dynamics of particles and systems, J. B. Marian, Academic Press (1970)				
5.	Classical mechanics, L. D. Landau and E. M. Lifshitz, 4th edition, Pergamon press (1985).				
6.	5. Mathematical Methods for Physicists – G. B. Arfken and H. Weber, Seventh Edition, Academic				
	Press, 2012				
7.	Introduction to Classical Mechanics, R.G. Takawale and P.S. Puranik, Tata McGraw- Hill (1979).				

Paper Code: P102						
Paper Title: Electronic Circuits & Devices						
Number	r of Credits: 04					
Course Outcomes:	Course Outcomes: Suggested Pedagogical Processes:					
After the completion of the course, students w	ill , , , , , , , , , , , , , , , , , ,	,				
be able to:	ods.					
1. Understand the basic concepts of	ICT based learning					
semiconducting devices.	Demonstration experiments					
2. Analysis of Op-amp (analog circuits) using	Group discussion & Problem-solvi	ng methods				
IC741.	Hands on experiments related to a	courses.				
3. Explore on the digital circuits and understand	Pre-recorded lectures & Open boo	ok tests				
the physical aspects of flip-flops.	• Study visits at facility centers at up	niversities and				
4. Learn the underlying concepts on RAM and	national research institutes.					
ROM.	• Seminars on different topics					
Title and Cor	itent	No of				
		Lecture				
		Hours				
Unit I Physics of devices : p-n junction, abr	upt junction – band structure – thermal	13 Hours				
equilibrium – Depletion region – depl	letion capacitance – current and voltage					
characteristics – BJT – band Structure	- transistor action – static characteristics.					
JFET structure, working, characteristi	cs. MOS structure - MOSFET working -					
MOSFET characteristics – width of d	epletion region – Junction capacitance-					
threshold voltage. Metal semiconducto	r contacts – ohmic and Schottky Contacts.					
current gain, response time	Principle of operation of photoelectronic devices: photoconductor – efficiency,					
Unit-II Operational amplifiers Block dia	Operational amplifiers: Block diagram of an operational amplifier –					
Characteristics of an ideal operation	al amplifier – comparison with 741 –	10 110415				
Operational amplifier as a open loo	p amplifier - Limitations of open loop					
configuration – Operational amplifier a	as a feedback amplifier: closed loop gain,					
input impedance, output impedance of	f inverting and non-inverting amplifiers -					
Voltage follower - Differential amplifie	er: voltage gain. Applications of op-amp:					
Linear applications – Phase and freque	ency response of low pass, high pass and					
band pass filters (first order), summin	g amplifier – inverting and non-inverting					
Differentiator Integrator Non linea	summing amplifier, lucal and practical					
negative clippers positive and negative	tive clampers small signal half wave					
rectifiers	arve champers, sman signar nan wave					
Unit-III Digital circuits : Review of gates (AND	, OR, NAND, NOR, NOT, EX-OR), - Boolean	13 Hours				
laws and Theorems – simplification of	of SOP equations – Simplification of POS					
equations - Simplification using Ka	rnaugh Map technique (4 variables)-					
conversion of binary to Grey Code -	Flip flops: Latch using NAND and NOR					
gates- RS flip flop , clocked RS flip flo	p, JK Flip flop, JK master slave flip flop -					
racing –Shift Registers basics - Count	ters: Ripple counters truth Table-timing					
ulagram, Synchronous counters-truth t	able-uming diagram, Decade counters.	12 Hours				
digital Converters-counter method su	and weighted resistor types. Analog to	15 HUUI 5				
converter. Application of DACs and	ADCs. Read Only Memory (ROM) and					
applications, Random Access Memory ((RAM) and Applications. Microprocessors					
and Microcontrollers basics						
References						
1 Comission duration Devices Director and The	pology CM Cgo (Cocord Edition 2002) Lib	n Wilcov or J				
1. Semiconductor Devices Physics and Techn Sons Inc. Asia.	lology, 5 M Sze, (Second Edition, 2002), Joh	m whey and				
2. Solid State Electronic Devices, Ben G Stree	tman, Sanjay Banerjee, (Fifth edition, 2000),				

Pearson Education, Asia.

- 3. Semiconductor Optoelectronic Devices, Pallab Bhattacharya, (Second Edition, 1997), Pearson education, Asia.
- 4. The art of electronics, Paul Horowitz and Winfield Hill, (Second Edition, 1992), Foundation Books, New Delhi.
- 5. Electronic Principles, A P Malvino, (Sixth Edition, 1999), Tata McGraw Hill, New Delhi.
- 6. Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, (Third Edition, 2004), Eastern Economy Edition.
- 7. Operational Amplifiers with Linear Integrated Circuits, William Stanley, (1988), CBS Publishers and Distributors.
- 8. Linear Integrated Circuits, D Roy Choudhury and Shail Jain, ((1991), New Age International (P) Limited.
- 9. Digital principles and applications, Donald P Leach and Albert Paul Malvino, (Fifth Edition, 2002), Tata McGraw Hill.

	Paper Code: P103				
Paper Title: Quantum Mechanics- I					
Number of Credits: 04					
Course (Outcomes:	Suggested Pedagogical Processes:			
After the	e completion of the course, students will				
be able f	to:	Lecture cum demonstration metho	ods.		
1. Unde	erstand the underlying concepts of	ICT based learning			
quar	itum mechanics.	Demonstration experiments			
2. Time	e independent Schrodinger Wave equation	Group discussion & Problem-solvi	ng methods		
for d	ifferent notentials	• Hands on experiments related to c	courses.		
3 Ann	eliminary concent on Dirac's dual spaces	Pre-recorded lectures & Open boo	k tests		
o. Apro	Formalism	 Study visits at facility centers at up 	niversities and		
A Evol	oration on different types of angular	 Study visits at facility centers at un national research institutes 	liver sities and		
4. Expl	oration on unierent types of angular	Cominant escal cli institutes.			
mom	ientums viz., orbitai and spin angular	• Seminars on different topics			
mom	ientum.				
	Title and Conter	nt	No of		
			Lecture		
			Hours		
Unit I	Introductory concepts: wave-particle di interpretation, free particle wave function evolution, Heisenberg Uncertainty princip uncertainty, complementarity principle Ti Conservation of probability, expectation theorems, Time-independent Schrodinge quantization, properties of the energy of time-independent potential Schrodinger e	uality, The wave function and its , Wave packets, Gaussian wave packet iple and illustrations, Time - energy ime dependent Schrodinger equation, n values and operators, Ehrenfest's r equation, stationary states, energy eigenfuntions, general solution for a equation in momentum space	13 Hours		
Ilnit-II	One-dimensional problems	quation in momentum space	13 Hours		
	Free-particle solution, momentum eigen in square well potential, transmission harmonic oscillator.	functions, box normalization, particle through a potential barrier, simple	15 110413		
Unit-III	General formalism of quantum theory: oper	rator methods	13 Hours		
	Review on linear vector spaces and mat linear operators and observables, Dirac no observables, generalized uncertainty observables, Unitary dynamics, projection dependence of observables: Schrodinger, Simple harmonic oscillator by operator me	rices, Hilbert space and observables, otation, degeneracy and simultaneous principle for two non-commuting n operators and measurements, time- Heisenberg and interaction pictures, ethod			
Unit-IV	Angular momentum: Orbital angular mon	mentum commutation relations, Eigen	13 Hours		
	values and eigen functions. General ope operators Jx, Jy, Jz. Ladder operators, Eig Matrix representations of angular moment Pauli matrices, Addition of angular mom computation of Clebsch-Gordan coefficient	rator algebra of angular momentum genvalues and eigenkets of J2 and Jz, tum operators, nentum, Clebsch-Gordan coefficients, ts in simple cases (j1 = j2=1/2).	-		
Referen	ces				
 Introduction to Quantum Mechanics – David J. Griffiths, Second Edition, Pearson PrenticeHall 2005. Quantum Physics – H.C. Verma, Surya Publication, 2012 Quantum Mechanics – Aruldhas Quantum Mechanics – V.K. Thankappan, Second Edition, Wiley Eastern Limited, 1993. Quantum Mechanics Vol I & II – C. Cohen-Tannoudji, B. Diu and F. Laloe, SecondEdition, Wiley Inter science Publication, 1977. Quantum Mechanics – L.I. Schiff, Third Edition, McGraw Hill Book Company, 1955. Quantum Mechanics – B.H. Bransden and C.J. Joachain, Second Edition, PearsonEducation, 2007. 					

- 9. Principles of Quantum Mechanics R. Shankar, Second Edition, Springer, 1994.
- 10. Quantum Mechanics E. Merzbacher, John Wiley and Sons, 1998.
- 11. Quantum Physics S. Gasiorowicz, John Wiley and Sons.
- 12. Linear Algebra Seymour Lipschutz, Schaum Outlines Series

	Paper Co	ode: P104				
	Paper Title: Mathematical Methods of Physics- I					
	Number of Credits: 04					
Course O	outcomes:	Suggested Pedagogical Processes:				
After the	completion of the course, students will	• Locture cum domonstration mothe				
be able t	0:	Lecture cum demonstration metric	Jus.			
1. Appli	cation of Integral Transformations for	ICI based learning				
differ	ent functions.	Demonstration experiments	.1 1			
2. Unde	rstand the concepts which uses complex	Group discussion & Problem-solvi	ng methods			
functi	ions.	Hands on experiments related to c	ourses.			
3. Solve	and analyze PDEs of Two Dimensions.	Pre-recorded lectures & Open boo	k tests			
4. Unde	rstand the nature of ODEs and solution of	• Study visits at facility centers at un	iversities and			
partic	cular types of ODEs.	national research institutes.				
		 Seminars on different topics 				
Title and	Content		No of			
			Lecture			
			Hours			
Unit I	UNIT - I: Integral Transforms: Fouri	er Transforms: Properties of Fourier	13 Hours			
	transforms – Fourier sine and cosine t	ransforms- Power in Fourier series -	-			
	Modulation theorem, Fourier transform o	f Impulse function, Constants, Unit step)			
	Lanlace Transforms: Definition and notati	on – Properties of Laplace transforms -	·			
	Laplace transforms of Dirac delta function	n and periodic functions (Square wave				
	sawtooth wave and triangular wave) – Inv	verse Laplace transforms – properties -	-			
	Solution of linear differential equations wi	th constant coefficients				
Unit-II	UNIT – II: Complex Variables Function	ns – Complex differentiation - Analytic	c 13 Hours			
	function - Cauchy – Reimann equations	-Derivatives of elementary functions -	-			
	Singular points and classification. Comp	ntegration - Lauchy's theorem -	-			
	theorem (statements only) – Residues cal	culations of residues - Residue theorem				
	– evaluation of definite integrals					
Unit-III	UNIT - III: Partial Differentiations Equ	ations: Review of ODE's- Properties o	f 13 Hours			
	Dirac delta Function, Laplace equation -	- Method of separation of variables -	-			
	Application of Laplace equation to two di	mensional steady state of heat flow in a	1			
	thin rectangular plate and a long cylinde	r. Wave equation in two dimensions -	-			
Unit_IV	Application to the vibration of a rectangula	Camma Functions Definitions and	12 Hours			
Unit-1V	properties – Evaluation of integrals Leg	endre Bessel and Hermite differentia				
	equations – Solutions – Generating functio	ns – Orthogonal properties of Legendre	,			
	Bessel and Hermite Functions – Recurr	rence relations - (Proof for Legendre				
	polynomials only)					
References						
1. Mathematical Methods for Physicists – G. B. Arfken and H. Weber, Seventh Edition, Academic Press, 2012						
2. Mathematical methods of physics - J. Mathews and R. L. Walker, Second Edition, Addison-Wesley						
3. M	athematical Methods in the Physical Science	e- Mary L Boas, Wiley Publication, (2005	5)			
4. Fi	unctions for Scientists and Engineers, W.W.	Bell, Van Nostrand Co., London (1968).				
5. Fo	ourier Analysis, Hsu P. Jewi, Unitech Division	1.				
6. La	aplace Transforms, Murray Spiegle, Schaum	s outline series, McGraw Hill, New York Harval III Edition, McGraw Hill Books	Co			
7. A 8 T	ppned mathematics for Engliteers, Fipes and heary and Properties of Compley Variables	S. Linschutz, Schaum's Series, McGraw F	till.			
9. M	athematical Physics, H.K. Das and Ramaverr	na, S. Chand & Co. Ltd., New Delhi (201	L).			
10. M	athematical Physics, B. Bhattacharyya, New	Central Book Agency Pvt. Ltd., (2010).	-			

Paper Code: P105				
Paper Title: Experimental Techniques in Physics				
	Number of C	redits: 03		
Course O	utcomes: S	Suggested Pedagogical Processes:		
After the	completion of the course, students will			
be able t	D:	• Lecture cum demonstration metho	ods.	
1. Unde	rstand the safety measures of the working	 ICT based learning 		
envir	onment as well as hazardous radiations.	 Demonstration experiments 		
2. A pre	liminary courseware on vacuum	Group discussion & Problem-solvi	ng methods	
techn	iques and overview of thinfilms.	 Hands on experiments related to c 	courses.	
3. Expos	sure towards the computational data	 Pre-recorded lectures & Open boo 	k tests	
analv	sis.	• Study visits at facility centers at un	niversities and	
5		national research institutes.		
		• Seminars on different topics		
	Title and Content		No of	
			Lecture	
			Hours	
IInit I	Safety measures in Experimental Physics		13 Hours	
oniti	Occupational health and safety, chemical si	ubstances, radiation safety, general	15 110015	
	electrical testing standards, General laborato	bry and workshop practice.		
	Instrumentation Electronics			
	Transducers, Transducer characteristics,	selection of an instrumentation		
	transducer, Transducer as an electrical e	lement, modelling external circuit		
** *- **	components, circuit calculations, ac and dc b	ridge measurements.	40.11	
Unit-II	Vacuum techniques	riation of voguum applications of	13 Hours	
	vacuum Vacuum numns: Rotary oil diffu	ision turbo molecular numps Ion		
	numps. Vacuum gauges: Pirani and Penning	gauges. Pumping speed of a vacuum		
	pump.	gaugeon amping specia of a vacuum		
	Thin film techniques			
	Thin film techniques(overview), film th	ickness monitors, film thickness		
	measurement.			
	Measurement of low temperature			
II	Resistance, thermometers, thermocouples		12 11	
Unit-III	Error and Computational Analysis.		13 HOURS	
	Measurement, result of a measurement	nt sources of uncertainty and		
	experimental error, Systematic error, rando	m error, Reliability- chi square test,		
	Analysis of repeated measurement, Precisi	ion and accuracy, Elementary data		
	fitting. Gaussian Fit, Lorentz Fit, Voigt p	rofile, FWHM, Softwares for Data		
	Analysis – Maple, Mathematica, Origin Pro (G	Qualitative)		
Reference	es			
1 M	essurement Instrumentation and Experiment	tal design in Physics and Engineering.	_	
2. M	ichael Saver and AbhaiMansingh, Prentice Hal	ll of India 2005		
2. M 3. D	ata Reduction and Error Analysis for the Phys	ical Sciences, P.R. Bevington and K.D I	Robinson.	
M	cGraw Hill, 2003			
4. E	ectronic Instrumentation- H.S. Kalsi, TMH Pul	olishing Co. Ltd. 1997		
5. Ir	strumentation Devices and Systems-C.S. Rang	an, G.R. Sharma, V.S.V. Mani, 2 nd Editi	on, Tata	
М	cGraw Hill, New Delhi, 1997			
6. Instrumentation Measurement Analysis-B.C. Nakra, K.K. Chaudhary.				

II SEMESTER

Paper Code: P201			
Paper Title: Statistical Mechanics & Thermodynamics			
	Number of	Credits: 04	
Course O	utcomes:	Suggested Pedagogical Processes:	
After the be able to	completion of the course, students will o:	Lecture cum demonstration metho	ods.
1. Differ	1. Different forms of energy in the thermodynamic • ICT based learning		
syster	n and their inter-relations.	Demonstration experiments	
2. The c	2. The concept of hypothetical ensembles to build • Group discussion & Problem-solving methods		ng methods
the br	idge between the thermodynamic and	Hands on experiments related to c	courses.
statis	tical mechanics.	Pre-recorded lectures & Open boo	k tests
3. Differ	ent types of distributions available for	• Study visits at facility centers at un	niversities and
bosor	is and their condensation.	national research institutes.	
4. Differ	ent types of distributions available for	Seminars on different topics	
fermi	ons and behavior of parameter in the non-		
equili	brium system.		
	Title and Conte	nt	No of
			Lecture
			Hours
Unit I	extensive variables, Thermodynamic de entropy changes irreversible proce thermodynamic systems, Thermodynamic the Gibbs functions, The Maxwell relations	efinition of Entropy –Calculation of sses, Equilibrium between two potentials –Enthalpy, Helmholtz and s, Exergy Analysis	13 Hours
Unit-II	Statistical Formulation : Phase space – ensembles - Ensemble average - Liou ensemble: ideal gas – Gibb's paradox – ensemble – Ideal gas in canonical ensemb gas in grand canonical ensemble – Compa partition function	Concept of ensembles – Types of wille's Theorem – Micro canonical Entropy and probability – Canonical le – Grand canonical ensemble – Ideal rison of various ensembles. Canonical	13 Hours
Unit-III	Maxwell – Boltzmann and Bose – Einstein S Maxwell - Boltzmann distribution - Dist verification - Calculation of mean value Einstein distribution, Bose – Einstein con the Planck's radiation law - Dulong and theories of heat capacities.	Statistics ribution of velocities – Experimental es – Equipartition theorem. Bose – ndensation, Black body radiation and d Petit's law - Einstein and Debye's	13 Hours
Unit-IV	Fermi – Dirac Statistics & Fluctuations		13 Hours
	Fermi - Dirac distribution - Electrons	in metals - Thermionic emission -	
	Magnetic susceptibility of free electrons. Fluctuations in ensembles, Onsagar's one dimensional and reciprocal rotations and their applications to thermoelectric phenomena, Kelvin's first and second equations: One dimensional random walk – Random walk and Brownian motion.		
References			
 K. Huang, Statistical Mechanics, Wiley Eastern Limited, New Delhi, (1963). F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill, Singapore(1985). R.K. Pathria, Statistical Mechanics, Bufferworgh Heinemann (2ndEdition) Silvio R A Salinas, Introduction to Statistical Physics, Springer, (2001) B.B.Laud, Fundamentals of Statistical Mechanics, New Age International Publication Statistical Physics, Bhattacharjee Thermal Physics, Kittel and Kremer 			
8. St 9. St	atistical Mechanics, B.K. Agarwal, Melvin Ei atistical Mechanics and properties of Matte	sner, 2nd Edition, New Age Internationa r by ESR Gopal — Student Edition (Ellis	al (P)Ltd. Horwood)

	Paper Code: P202		
Paper Title: Electrodynamics & Plasma Physics			
	Number of C	Credits: 04	
Course O	Course Outcomes: Suggested Pedagogical Processes:		
After the	completion of the course, students will	• Lecture cum demonstration met	hode
be able to	0:	Lecture cum demonstration met.	lious.
1. Under	rstand the preliminary concepts on	 Demonstration experiments 	
electr	ostatics and magnetostatics.	Group discussion & Problem-solution	ving methods
Z. Analy	sis of Maxwell's equations and its	 Hands on experiments related to 	Courses
appilo	Caulons.	 Pre-recorded lectures & Open bo 	ok tests
Doton	tial and Review of Lorentz transformations	 Study visits at facility centers at the 	universities
4 Under	rstand the electromagnetic wave interaction	and national research institutes.	
in an	electrical fluid.	 Seminars on different topics 	
Title and	Content		No of
			Lecture
			Hours
Unit I	Electrostatics and Magnetostatics: Gauss	s's law and applications, Electric	13 Hours
	potential, Poisson's equations, Work, End	ergy in electrostatics, Laplace and	
	Laplace's equation in one, two and three	dimension cartesian co-ordinates,	
	boundary conditions and uniqueness t	heorem, Method of images with	
	dielectrics Biot - Savart law and application	ons Ampere's law and applications	
	Magnetic vector potential. Multipole expansion	sion of the vector potential. Magnetic	
	field inside matter.	F	
Unit-II	Electrodynamics and Electromagnetic wav	es: Review of Maxwell's equations,	13 Hours
	scalar and vector potentials, Gauge trans	sformations, Coulomb and Lorentz	
	gauges, energy and momentum of c waves	, propagation through linear media,	
	conducting media dispersion in non-conducting	ductors wave guides TF waves in	
	rectangular wave guide.	auctors, wave galacs, 11 waves in	
Unit-III	Electromagnetic Radiation: Fundamentals	of Radiation: Waves in Free space,	13 Hours
	Radiation & Reception. Radiation effects: R	eflection, Refraction, Interference of	
	electromagnetic waves & Diffraction of radi	0 waves.	
	interaction of electromagnetic radiation:	rt notentials fields of a point charge	
	in motion. power radiated by a po	bint charge. Review of Lorentz	
	transformations.	<i></i>	
	Propagation of Electromagnetic Radiation: G	round wave, Sky- wave, Space wave,	
** ** ***	Extra-terrestrial Communication		40.11
Unit-IV	Plasma physics. Definition of Plasma, Deby	e shielding, charged particle motion	13 Hours
	Adiabatic invariants. Dielectric constant of	a plasma, the equations of motion of	
	a plasma fluid, Drift velocities, plasma osci	illations, plasma waves, propagation	
	of electromagnetic waves in plasma.		
References			
1 In	troduction to electrodynamics DI Criffthe D	PHI Third Edition (2004)	
2. El	ectromagnetics, B.B. Laud. New Age Internati	ional PVT. LTD.(1987).	
3. El	ectromagnetic fields and waves. P. Lorrain ar	nd D. Corson, CBS (1986)	
4. El	ectromagnetism, I.S Grant and W.R Phillips, J	ohn Wiley and Sons Ltd. (1975).	
5. El	ectromagnetism, Pramanik, PHI		
6. El	ectronic Communication Systems, George Ke	nnedy & Bernard Davis, Fourth Edition	n, TMH
5. El 6. El Pi	ectromagnetism, Pramanik, PHI ectronic Communication Systems, George Ke ublication. (1999)	nnedy & Bernard Davis, Fourth Editio	n, TMH

Paper Code: P203			
Paper Title: Quantum Mechanics- II			
	Number of (Credits: 04	
Course O	utcomes:	Suggested Pedagogical Processes:	
After the	completion of the course, students will		
be able t	• Lecture cum demonstration met		hods.
1. Expos	sure towards the fundamental correction	ICT based learning	
factor	tactors for time independent quantum system. • Demonstration experiments		
2. Elucidate on understanding the second and third • Group discussion & Problem-solv		ving methods	
order correction factors contributing towards - Hands on experiments related to		courses.	
3 Distir	unish between Continuous and Discrete	Pre-recorded lectures & Open bo	ok tests
svmr	netries and further emphasize on	• Study visits at facility centers at	universities
funda	mental quantum systems.	and national research institutes.	
4. Explo	re on the relativistic quantum mechanics.	• Seminars on different topics	
	Title and Content	t	No of
			Lecture
			Hours
Unit I	Approximation methods for stationary probl	lems	13 Hours
	Time independent perturbation theory: Tir	ne independent perturbation theory	
	for a non-degenerate energy level, time inc	dependent perturbation theory for a	
	degenerate energy level, Applications: (1)	one dimensional harmonic oscillator	
	subjected to a perturbing potential in $X_{x_{i}}$	the energy ground state of Helium	
	WKB approximation: the <u>-classical region</u>	connection formulae tunneling	
Unit-II	-II Time dependent nerturbation theory Statement of the problem		13 Hours
	approximate solution of the Schrodinger equation, constant perturbation.		
	harmonic perturbation, transition to a continuum, the Fermi golden rule		
	Scattering theory: The scattering experiment, relationship of the scattering		
	cross section to the wave function, scattering amplitude and scattering cross-		
section, Born approximation, scattering by a spherically symmetric potential,			
approximation.			
Unit-III	Symmetry principles and conservation la	aws	13 Hours
	Continuous symmetries: Spatial translation	on symmetry and conservation of	
	linear momentum, time translation symr	netry and conservation in energy,	
	Rotations in Space: Conservation of angula	ar momentum Discrete symmetries:	
	Parity, Time reversal, Permutation symmetry	etry, symmetric and antisymmetric	
IInit-IV	Relativistic quantum mechanics	cies, ortito and para nenum states.	13 Hours
	Klein-Gordan equation for a free relativity	stic particle. Plane wave solutions	15 110415
	probability density and probability current	density.	
	Dirac Hamiltonian for a free relativistic pa	article, properties of alpha and beta	
	matrices, probability density and probability	ility current, positive and negative	
	energy solutions, orthogonality and comple	teness of the solutions, intrinsic spin	
	of the Dirac particle, Negative energy sea, gamma matrices, covariant form of Dirac equation		
	Dirac Equation.		

- 1. Introduction to Quantum Mechanics David J. Griffiths, Second Edition, Pearson Prentice Hall 2005.
- 2. Quantum Physics H.C. Verma, Surya Publication, 2012
- 3. Quantum Mechanics Aruldhas
- 4. Quantum Mechanics V.K. Thankappan, Second Edition, Wiley Eastern Limited, 1993.
- 5. Quantum Mechanics Vol I & II C. Cohen-Tannoudji, B. Diu and F. Laloe, Second Edition, Wiley Inter science Publication, 1977.
- 6. Quantum Mechanics- L.I. Schiff, Third Edition, McGraw Hill Book Company, 1955
- 7. Quantum Mechanics B.H. Bransden and C.J. Joachain, Second Edition, Pearson Education, 2007.
- 8. Modern Quantum Mechanics J.J. Sakurai, Revised Edition, Addison-Wesley, 1995.
- 9. Principles of Quantum Mechanics R. Shankar, Second Edition, Springer, 1994.
- 10. Quantum Mechanics E. Merzbacher, John Wiley and Sons, 1998.
- 11. Quantum Physics S. Gasiorowicz, John Wiley and Sons.

Paper Code: P204						
Paper Title: Numerical Analysis & Computational Physics						
	Number of C	redits: 04				
Course Outcomes: Suggested Pedagogical Processes						
After the	completion of the course, students will	Lecture and demonstration met	hada			
• Lecture cum demonstration met.		nous.				
1. Solve system of equations, differentiate and						
integrate functions numerically. • Demonstration experiments						
2. Under	• • • • • • • • • • • • • • • • • • •	Group discussion & Problem-sol	ving methods			
Proba	bility Distributions and Statistics.	Hands on experiments related to	o courses.			
3. Under	• stand the elementary codes and write	Pre-recorded lectures & Open be	ook tests			
simpl	e codes for applications.	Study visits at facility centers at	universities and			
4. Solve	the system of equations, integration of	national research institutes.				
functi	ons and solve ODE using Computational	Seminars on different topics				
Metho	ods.	•				
	Title and Content		No of Lecture			
			Hours			
Unit I	Numerical methods		13 Hours			
omer	Interpolation, solution of linear algebraic e	quations using Gauss elimination	10 110010			
	method, Curve Fitting by least square fit	method, Numerical integration,				
	Trapezoidal and Simpson's rules, Numerical	differentiation, Euler and Runge-				
	Kutta methods, Finding roots, bisection meth	iod,				
	Newton-Raphson method.		10.11			
Unit-II	Probability and Statistics		13 Hours			
	Radom Variables, Fundamental probability laws; permutation and					
	distribution and general properties of dis-	tributions multivariate Gaussian				
	distributions. Errors of observation a	nd measurements. Fitting of				
	experimental data					
Unit-III	Programming-I		13 Hours			
	Elementary information about digital of	computer principles, compilers,				
	interpreters and Operating systems, Cons	stants and variables, arithmetic				
	expressions, data types, input and Output	statements, control statements,				
	switch statements, the loop statements, form	nat				
	Specifications, arrays, algorithms, flowcha	rts, functions and some simple				
Ilnit-IV	Programming -II		13 Hours			
onic iv	C program for (i) finding roots using Nex	wton-Raphson method. Bisection	15 110015			
	method, (ii) solving Simultaneous linear alg	gebraic equations, (iii) evaluating				
	integrals using Simpson's and Trapezoid	lal rules, (iv) solving ordinary				
	differential equations using Euler and Rung	ge-Kutta Method, (v) least square				
	fitting (vi) Lagrange's interpolation					
Referenc	es					
1. Mathen	natical methods of physics - J. Mathews and R.	L. Walker, Second Edition,				
Addison-V	Wesley					
2. Mathen	naucai methods for Physicists – G. B. Arfken al Pross 2012	па п. weder, Seventh Edition,				
Acauemic 3 Introdu	riess, 2012 ctory Methods of Numerical analysis – S.S. Sad	stry Third Edition Prentice - Hall				
of India 2	003	suy, rima Landon, richade – Hall				
4. Program	nming in ANSI – C. E. Balaguruswamy. Second	Edition, Tata McGraw Hill. 1992				
5. Compu	tational <i>Physics</i> - The University of Texas at A	ustin				
6. Web lin	k: http://www.phys.unsw.edu.au/~mcba/ph	<u>ys2020/#numint</u>				
			or tree mini <u>neep.//www.pnys.answ.cua.au//meba/pnys2020//mullille</u>			

	Paper Code: P 205			
Paper Title: Radiation Biophysics & Medical Instrumentation				
	Number of Credits: 02			
Course O	utcomes:	Suggested Pedagogical Processes:		
After the	completion of the course, students will		,	
be able t	• Lecture cum demonstration metho		ods.	
1. Radia	tion effects on living systems comprising	ICT based learning		
of bio	logical macromolecules and further	Demonstration experiments		
intro	luced to understand the medical	Group discussion & Problem-solvi	ng methods	
2 Under	cations of radiations.	Hands on experiments related to a	courses.	
2. Ollue	rations of sensors	Pre-recorded lectures & Open boo	k tests	
3. Expos	sure towards the working principle of	• Study visits at facility centers at un	niversities and	
biome	edical lasing devices.	national research institutes.		
	0	• Seminars on different topics		
	Title and Conte	nt	No of	
			Lecture	
			Hours	
Unit I	Radiation biophysics: Radiation sources, In	teraction of radiation with matter	13 Hours	
	(general discussion), energy transfer proc	ess, measurement of radiation,		
	Dosimetry, effect of radiation on living sys	tems, radiation protection and		
	radiation therapy.			
	Medical applications of nuclear radiations:	Radioisotopes for diagnosis and		
	medicines, gamma camera, positron emiss	ion tomography, single photon		
	imaging (MRI) boron neutron canture the	principle of magnetic resonance		
Unit-II	Biomedical Applications of Sensors: Physic	cal Sensors: Variable Resistance	13 Hours	
onic n	Sensor. Strain Gauge. Force & Pressure Me	asurement. Bio potential Electrodes:	10 110415	
	Sensing Bioelectric Signals, Electrical Char	acteristics, pH Sensors, Diagnostic		
	Devices: Mass Spectrometry and Electroph	noresis		
Unit-III	Medical Instruments: Bio electrical Devices	s: Biomedical Lasers- Interaction and	13 Hours	
	Effects of UV IR Laser Radiation on Biologi	cal Tissues: Absorption & Scattering		
	process, Effects of Continuous & Pulsed vis	sible laser radiation & Associated		
	Temperature rise.	nometers Dulas Concreters Concing		
	mechanism and output measurements Ric	ond Clucose Monitoring- Development		
	of Colorimetric Test Strips, Emergence of F	Electrochemical Strips and Ontical		
	reflectance meters.			
Reference	res			
1. Medical Devices & Human Engineering, Joseph D Borinzo & Donald R Peterson, CRC Press,4th				
E	lition, 2016.			
2. A	spects of Biophysics- William Hughes, John	Wiley and Sons, 1979		
3. Biochemistry of Nucleic acids- Adams et al. Chapman and Hall, 1992				

III SEMESTER

Paper Code: P 301			
Paper Title: Atomic & Molecular Physics			
After the be able to 1. Descr of ato spect Zeem 2. To ur of rot apply spect 3. To ur vibra with 4. To de broad	Number of Course Outcomes: completion of the course, students will o: ribe theories explaining the structure oms and the origin of the observed ra. Identify atomic effect such as an effect and Stark effect. Inderstand the fundamental key aspects rational and Raman spectroscopy and the knowledge in elucidation of ra. Inderstand the fundamental aspects of tional spectroscopy and to correlate structure-property relationship. Evelop the elementary idea on dening of spectral lines	 Credits: 04 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to con Pre-recorded lectures & Open book Study visits at facility centers at univand national research institutes. Seminars on different topics 	s. 3 urses. tests versities
51040	Title and Con	tent	No of
			Lecture Hours
Unit I Unit-II	 Atomic Physics: Brief review of early at Energy levels and selection rules, Relati hyperfine structure, Lamb shift and isot fields: Zeeman effect, Paschen-Back effe Two electron atom: Ortho and para stat principle, levelschemes of two electron coupling schemes, Lande interval rule. Molecular Physics-A: Born-Oppenheime spectroscopy: Classification of rotors. D Centrifugal distortion and non –rigid ro Intensity of rotational lines, Experimen Spectrometer. Raman Spectroscopy: Raman scattering 	omic models. Hydrogenic atoms: vistic corrections and fine structure, cope shift. Interaction with external ect, Starkeffect. tes and role of Pauli's exclusion atoms. Many electron atoms: LS and JJ er approximation, Rotational biatomic molecule as a rigid rotator, otator, energy levels and spectra, ital technique: Microwave	13 Hours 13 Hours
	Vibrational Raman spectroscopy (diato Raman Spectrometer. Qualitative discu	omics). Experimental technique: Laser ssions on CARS and SERS	
Unit-III	Molecular Physics-B: Vibrational Spectr harmonic oscillator,anharmonicity,effe terms, energy levels and selection rules ro-vibrionic spectra, Experimental tech Applications of IR spectroscopy. Mutua Electronic spectra of diatomic molecules rotational finestructure in electronic sp electronic spectra – Frank-Condon prin dissociation, Jablonski Diagram	oscopy:Diatomic molecule as a simple ct of anharmonicity on vibrational s. Vibrating rotator-energy levels and inique and IR spectrometry. l exclusion principle. s:vibrational coarse structure and bectra, intensity of vibrational bands in aciple.Dissociation and pre-	13 Hours
Unit-IV	Absorption and emission of radiation: In Einstein'scoefficients, Beer's law for att The width and shape ofspectral lines: n broadening-estimation of half width, Ge mechanisms-collision and power broad	nteraction of radiation with matter: cenuation and amplification of light. atural broadening, Doppler eneraltreatment of other broadening lening.	13 Hours

- 1. Atomic Spectra and radiative transition Igor Sobelman, Springer Publication.
- 2. Physics of atoms and molecules, Bransden and Joachain, (2nd Edition) PearsonEducation,2004
- 3. Fundamentals of Molecular Spectroscopy, Banwell and McCash, Tata McGraw Hill, 1998.
- 4. Modern Spectroscopy, J.M. Hollas, John Wiley, 1998.
- 5. Molecular Spectroscopy, Jeanne L. McHale, Pearson Education, 2008
- 6. Molecular Quantum Mechanics, P.W. Atkins and R.S. Friedman, 3rd Edition, OxfordPress (Indian Edition), 2004.
- 7. Molecular Structure and Spectroscopy: G. Aruldhas, Prentice Hall of India, New Delhi, 2001

Paper Code: P 302			
Paper Title: Condensed Matter Physics Number of Credits: 04			
Number of circuits: ofCourse Outcomes:After the completion of the course, studentswill be able to:Suggested Pedagogical Processes1. An overview on crystal structure and X- ray diffraction.Lecture cum demonstration methods1. An overview on crystal structure and X- ray diffraction.Demonstration experiments2. A detailed description of free theory of 		s. s. urses. tests zersities	
	Title and Cont	tent	No of
			Hours
Unit I	Crystal structure: Crystalline state - p translation vectors. The basis and c primitive lattice cell-fundamental type and crystal systems. Elements o spacegroups-nomenclature of crystal indices. X-ray diffraction : Scattering of x-rays, L scatteringfactor, geometrical structu properties.	periodic arrangement of atoms-lattice crystal structure, primitive and non- es oflattice, -2d and 3-d Bravias lattice f symmetry operations pointsand directions and crystal planes-miller aue conditions and Bragg's law, atomic re factor, Reciprocal lattice andits	13 Hours
Unit-II	Free electron theory of metals: Free electron model, Electrons moving in one dimensionalpotential well, three-dimensional potential well, quantum state and degeneracy, the density ofstates, theelectronic specific heat. Electrical conductivity of metals, relaxation time and mean free path, electrical conductivity and Ohm's law, Thermal conductivity, Widemann - Franz law, thermionic emission. Hall effect.		13 Hours
Unit-III	Semiconductors: Introduction to s semiconductors, Intrinsic and extrinsic concentration (only for intrinsic), ic equation, conductivity-mobility and the in semiconductors. Superconductors: Critical temperature- conductivity idealand non-ideal su conductivity by magnetic field -Meiss microwave and infrared properties- Is Josephson tunneling-exotic superconduct	emiconductors, band structure of semiconductors, expression for carrier onization energies, charge neutrality eir temperaturedependence, Hall effect persistent current-occurrence of super perconductors-Destruction of super oner effect- heat capacity-energy gap- sotope effect-BCS theory (qualitative)- actors- high Tcsuperconductors.	13 Hours
Unit-IV	Dielectrics : Introduction, Review of bad displacement vector -different kinds Lorentz field-Clausius-Mossatti relation dipolar polarizability, ferroelectricity an Magnetism : Review of basic formulae Langevin theoryof diamagnetism, pan domains-Weiss molecular fieldtheo interaction theory- Antiferro-magnetism	asic formulae, Dielectric constant, and s of polarization-local electric field- n- expressions for electronic, ionic and nd piezo electricity. -classification of magnetic materials- ra-magnetism and Ferromagnetism – ry (classical)-Heisenberg exchange n and ferrimagnetism	13 Hours

1. A.R. Verma and O.N. Srivastava: Crystallography Applied to Solid State Physics, 2nd edition, New Age International Publishers, 2001

2. Solid State Physics- A. J. Dekker, Macmillan India Ltd., Bangalore, 1981.

3. Solid State Physics- C. Kittel, V Ed., Wiley Eastern Ltd., 1976.

4. Elementary Solid state physics, - M.A. Omar, Addissonwesley, New Delhi, 2000.

5. Solid state Physics- S.O. Pillai. New Age International Publication. – 2002.

6. Solid state Physics- M.A. Wahab, Narosa Publishing House, New Delhi.- 1999.

7. Modern theory of Solids- Seitz.

8. Semiconductors Devices-Physics and Technology- S.M. Sze.

9. Introduction to Solids – L. Azoroff.

10. Solid State Physics- H.C. Gupta- Vikas Publishing House, New Delhi.-2002

Paper Code: P 303			
Paper Title: Nuclear and Particle Physics			
	Number of	Credits: 04	
After the be able to 1. To in 2. To W 3. To do 4. In	Course Outcomes: completion of the course, studentswill o: o understand the basic concept of teraction ofradiation with matter. o emphasize and understand the orking principle of nuclear detectors. o learn the nuclear models and nuclear ecay. i detail study related to particle avsics.	 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to con Pre-recorded lectures & Open book Study visits at facility centers at univ and national research institutes. 	s: s. g urses. tests versities
1	Title and Cont	• Seminars on unierent topics	No.of
Title and Content		Lecture Hours	
Unit I	Interaction of nuclear radiation with particles: Energy loss of heavy char formula, energy loss of fast electron gamma rays: Photoelectric, Compton, a forces: Characteristics of nuclear force square well potential, relation between Inadequacies of the central force, expe magnetic moment and quadrupole mon state as an admixture of s and d states.	h matter: (a) Interaction of charged ged particles in matter, Bethe-Bloch s, Bremsstrahlung. (b) Interaction of and pair production processes. Nuclear es, Ground state of the deuteron using n the range and depth of the potential, rimental evidence for the tensor force, ment of the deuteron, deuteron ground	13 Hours
Unit-II	Nuclear detectors and Nuclear electron Detectors-NaI(Tl), Scintillation spect Surface barrier detectors, Li ion dri applied voltage and the depletion r electronics: Preamplifiers: voltage and pulse amplifier, Schmitt trigger as a dis analyzer) & integral discriminators, multichannel analyzer (MCA): function use in data processing.	onics: Nuclear detectors: Scintillation trometer, Semiconductor detectors: fted detectors, relation between the region in junction detectors. Nuclear charge sensitive preamplifiers, Linear criminator, differential (single channel Analog to digital converters (ADC), nal block diagram and its working and	13 Hours
Unit-III	Nuclear models and Nuclear decay: Nuclear models and Nuclear decay: Nuclear decay: Nuclear decay: Nuclear decay: Shell model: Evidence for magic numbristates pin, parity and magnetic moment Beta decay: Fermi's theory of beta selection rules. Gamma decay: Multipolarity of game conversion (qualitative treatment).	clear models: Liquid drop model: Semi- clei against beta decay, mass parabola, pers, prediction of energy levels in an rbit interaction, prediction of ground t of odd-A nuclei, Nordheim's rules. decay, Kurie plots and —ft values, mma rays, Selection rules, Internal	13 Hours
Unit-IV	Elementary particle physics: Types particles, hadrons and leptons, detection conservation laws: conservation of en- charge and isospin, parity symmetry, with handedness of neutrinos, Lepton num three generations of neutrinos. Charge weak interactions, Strange particles, of	of interactions between elementary ection of neutrinos. Symmetries and ergy, momentum, angular momentum, iolation of parity in weak interactions - nber conservation, Lepton family and conjugation symmetry, CP violation in conservation of strangeness in strong	13 Hours

interactions, Baryon number conservation, Gell-Mann Nishijima formula, eight fold way (qualitative only), quark model, quark content of baryons and mesons.

- 1. Atomic and Nuclear Physics, S N. Ghoshal: Vol. II.,2000.
- 2. The Atomic Nucleus, Evans R. D.: Tata McGraw Hill, 1955.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam: Wiley-Eastern Ltd. 1983.
- 4. Nuclear Physics- an Introduction, S.B.Patel: New Age international (P) Limited, 1991.
- 5. Radiation Detection and Measurements, G.F. Knoll: 3rd edition, John Wiley and Sons, 2000.
- 6. Nuclear Radiation Detectors, S.S. Kapoor and V.S. Ramamurthy: Wiley-Eastern, New Delhi, 1986.
- 7. Nuclear Interaction, S. de Benedetti: John Wiley, New York, 1964.
- 8. Nuclear Radiation Detection, W.J. Price: Mc Graw Hill, New York, 1964.
- 9. Introduction to Elementary particles, D. Griffiths: John Wiley, 1987.
- 10. Elementary Particles, J. M. Longo, II Edition, McGraw-Hill, New York, 1973.
- 11. Introduction to Nuclear Physics, Wong, PHI

Paper Code: P 304			
Paper Title: Materials Science (Elective – 01)			
	Number of	Credits: 04	
 Course Outcomes: After the completion of the course, students will be able to: To understand the fundamental aspects on formation and selection of materials. To learn elastic properties of materials. To elucidate on structural – compositional aspects of materials through phase diagram. Introduction to methods employed in characterization of materials. Suggested Pedagogical Processes Lecture cum demonstration methods ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to cou Pre-recorded lectures & Open book to Study visits at facility centers at univ and national research institutes. Seminars on different tonics 		s: s. urses. tests zersities	
	Title and Cont	tent	No of
			Lecture
TT 1. T			Hours
Unit I	Formation and Structure of Materials engineering, materials-structure-prop atoms-binding energy-cohesion of atom cohesive energy, Review of ionic, co- angle, bond length and bond energ calculation of lattice energy of ionic cry Madelung constant of ionic crystal interaction. Lennard – Jones potential.	s: Introduction to materials science- berty relationship. Forces between ms and cohesive energy-calculation of valent and molecular binding's bond by of NaCl molecule. Lattice energy: stals, Madelung constant: calculation of ls, cohesive energy. Vander Waal's	13 Hours
Unit-II	Elastics and plastics behavior of materials:		13
	Atomic model of elastic behavior-rub viscoelasticbehavior, fracture of mat Ductile brittle transitionprotectionaga slip-shear strength of perfect and real c move dislocation. Griffith Crack Theory	ber like Elasticity-anelastic behavior, cerials-Ductile and brittle fracture – ninst fracture, Plastic deformation by rystals- CRSS ratio, maximum, stress to	Hours
Unit-III	Phase diagrams and Phase transformation	ons	13
	Phase diagrams-Gibb's phase rule and i – isomorphous, eutectic and peritectic-t Cu-Zn, Al-Cu, Fe-C systems. Heat treat and tempering. Time temperature Trant Phase transformations-Nucleation transformations in steel. Solidified recrystallization and grain growth.	its applications to binary alloy systems the Lever rule. Typical phase diagrams- tment processes-annealing, hardening sformation Diagrams, Glass Transition, and growth-nucleation kinetics cation and crystallization-recovery,	Hours
Unit-IV	Testing Of Materials: Mechanical Te	sting – Universal Testing Machine,	13
	Hardness- Brinnel, Vicker and Rockwe Creep Testing. Optical Microscopy – Metallurgical Microscopy size measurements. Electron microsco Scanning microscopy (SEM)-principle, applications. Non-Destructive Testing – Visual, Lic Magnetic inspection Ultrasonic Terradiography.	ell, Impact testing and Fatigue Testing, roscopes-sample preparation and grain opy – transmission microcopy (TEM), sample preparation techniques and its quid Penetration, Eddy Current Test, sting, X-ray radiography, Neutron	Hours

1. Elements of Materials Science and Engineering: Lawrence H. Van Vlack, Addison Wesley, (1975).

2. Foundations of Materials Science and Engineering-William F. Smith, McGraw HillsInternational Edition, (1986)

- 3. Materials Science and Engineering, V. Raghavan, Prentice Hall (1993)
- 4. Structure & Properties of materials-Vol I-IV Rose, Shepard and Wulff (1987)
- 5. Testing of Materials Vernon John(1987)

Paper Code: P 304 (b)		
Paper Title: Atmospheric and Space Science (Elective – 02) Number of Credits: 04		
Number of creates: 04Course Outcomes:After the completion of the course, studentswill be able to:Suggested Pedagogical Processes1. To understand the fundamental aspects atmospheric science.Lecture cum demonstration methods2. To learn importance of sun and to understand their physicsDemonstration experiments3. To elucidate on radiative transfer and 		s. s. urses. tests zersities
	Title and Content	No of
		Lecture Hours
Unit IFundamentals of Atmospheric Sciences: Elementary concepts of weather and climate; earth-sun relationship; structure and composition of the atmosphere; Atmospheric pressure, temperature, wind, relative humidity, solar and terrestrial radiation, clouds, different forms of precipitation; diurnal variation of surface pressure and variation of pressure with height; diurnal variation of surface temperature and variation of temperature with height; Categorization of wind: squall, land and sea breeze, katabatic and anabatic winds, winds associated with storms, gustiness, gale, Beaufort scale, Buys-Ballot's law, geostrophic wind; basic ideas of general circulation.Unit-IISolar Physics:Composition and structure of sun, solar interior and seismology, Sunspots and solar rotation, Solar Cycle, Magnetically controlled solar phenomena, Magnetic fields in solar interior and flux emergence. Photosphere, Chromospheres and Coronae Solar Flares and Coronal Mass Ejections Solar Corona and Solar Wind - Optical, radio and X-ray data.Sun in		13 Hours 13 Hours
Unit-III	Data from recent satellites: GOES, SOHO, STEREO, SDO, etc. Radiative Transfer: The spectrum of Radiation; Quantitative description of Radiation; Blackbody Radiation-The Plank Function-Wiens displacement Law- The Stefan-Boltzmann Law; Radiative properties of Non Black Materials- Kirchoff's Law, Radiative equilibrium, The Greenhouse Effect, Atmospheric Window, Albedo; Physics of Scattering and Absorption and Emission- Scattering by Air molecules and particles-Absorption by particles-Absorption and Emission by Gas molecules; Radiative Transfer in Planetary Atmosphere- Beers Law- Reflection and Absorption by a layer of the Atmosphere- Absorption and Emission of Infrared Radiation in Cloud-Free Atmosphere- Vertical profiles of Radiative Heating rate, Radiativetransfer in a plane parallel atmosphere; Radiative Balance at the top of the Atmosphere, the role of radiation in climate.	13 Hours

Unit-IV	Fundamentals of Climate:Climate System - Roles of various components of the	13
	Earth System in determining Climate. Feedback processes in Climate System -	Hours
	concept of feedback, applications of feedback to the climate system; Weather	
	vs Climate, Environmental change concepts, Natural Climate Variations (slow	
	and quick); Unnatural Changes (Ozone depletion and Global Warming); Over	
	view of Climate and Twentieth Century Climate Change; Physics of the	
	Greenhouse Effect and Global Radiation Budget; Greenhouse Effect of Trace	
	Gases; Atmospheric Radiative Transfer - Albedo, Radiative forcing and climate	
	Feedbacks, Aerosols, Clouds, Radiation interactions, Atmospheric Pollution	
	and Visibility; Urban heat island effect and Urban Climate change;	
	Anthropogenic forcing of climate change; Hydrological cycle, Carbon cycle.	
References		
1. Introd	uction to Space Physics: M. G. Kevilson and C. T. Russell	
2. An Introduction to Atmospheric Physics: D. G. Andrews, CUP		
3. Advances in Meteorology, Climatology and Atmospheric Physics: D. D. Alexakis.		
4. Atmospheric Chemistry and Physics: John H. Sienfield.		
5. Atmos	pheric Electrodynamics: H. Volland	

Paper Code: P 304 (c) Paper Title: Astrophysics (Elective - 02)			
Number of Credits: 04			
After the be able to 1. A co 2. U 3. E cl 4. D er	Course Outcomes: completion of the course, studentswill o: nalyze the fundamental aspects of oordinate systems and telescopes nderstand age, class and type of stars mphasize on the solar system and their assification. escription of galaxies, universe and mphasizes on stellar evolution.	 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to con Pre-recorded lectures & Open book Study visits at facility centers at univ and national research institutes. 	s: s. g urses. tests zersities
	Title and Conte	ent	No of
			Lecture Hours
Unit I	Basic Concepts: Coordinate systems, Timparsec, Apparent and absolute magniture radii of stars, Michelson's Stellar intermasses, Radial and transverse velocities characteristics, modern telescopes like C	ne systems, Trigonometric parallaxes, ides, Atmospheric extinction, Angular erferometer, Binary stars and their s, types of optical telescopes and their Gemini, KECK etc.	13 Hours
Unit-II	Properties of Stars: Spectra of stars, Spectral sequence-temperature and		13
	luminosity classifications, H-R diagra application to stellar spectra, Virial theo formation and main sequence evoluti dwarfs, Pulsars, magnetars, Neutron star	am, Saha's ionization formula and orem, Stellar structure equations, Star on, mass luminosity relation, White rs and Black holes, Variable stars.	Hours
Unit-III	The Solar System: The surface of the rotation, sunspots, the active sun, Propplanets, Satellites of Planets, comets, Objects and Oort Cloud. Theories of form	e sun, solar interior structure, solar erties of interior planets and exterior , asteroids, meteorites, Kuiper Belt nation of the solar system.	13 Hours
Unit-IV	Star clusters, Galaxies and the Universe: C and contents of milky way galaxy, Hubbl structure and dark matter, galactic motio Big bang theory and the origin of the ear microwave background radiation and ev	Open and global clusters, the structure e's classification of galaxies, Galactic ons, Hubble's law, Olber's paradox, ly universe, nucleosynthesis, cosmic volution of the universe.	13 Hours
Big bang theory and the origin of the early universe, nucleosynthesis, cosmic microwave background radiation and evolution of the universe.References1. The New Cosmos, A. Unsold: Springer Verlag, 1977.2. Introduction to Stellar Astrophysics, E. Bohm-Vitense: 3rd volume, CUP, 1989.3. Astrophysics and Stellar Astronomy, T.L. Swihart: Wiley 1968.4. The Stars; their Structure and Evolution, R.J. Taylor: CUP, 1994.5. Introduction to Cosmology. V. Narlikar: y, CUP, 1993.6. Principles of Physical Cosmology, Peebles P.J.E.: Princeton U.P. 1993.7. Galaxies; their Structure and Evolution, R.J. Taylor: CUP, 1993.8. Solar System Astrophysics, Brandt J.C. and Hodge: McGraw-Hill, 1964.9. The Physical Universe, F. Shu: Sopress, 1987.10. Introduction to Modern Astrophysics, Ostlie and Carroll: Addison Wesley,199711. Astrophysics Concepts, M. Herwit: John Wiley, 1990.			

- 12. An Introduction to Astrophysics Baidyanath Basu:, PHI
- 13. A textbook of Astrophysics and cosmology, V.B.Bhatia: New Age
- 14. Our solar system:Rana etc.
- 15. Stars and Galaxies K.D. Abhyankar:, UniversityPress
- 16. Astrophysics. Krishnaswamy (ed):
- 17. Pulsar Astronomy, A.G.Lyne and G.Smith, Cambridge Univ. press.

IV SEMESTER

Paper Code: P 401			
	Paper Title: Lasers & Nonli Number of	inear Optics (Elective – 03) Credits: 04	
Number of Credits: 04Course Outcomes:After the completion of the course, students will be able to:Suggested Pedagogical Processes:1. Understand the fundamental aspects of wave optics (viz., interference and diffraction) Lecture cum demonstration methods2. Emphasis on key aspects on laser mechanism Demonstration experiments3. An introductory course on Nonlinear optical phenomenon Fundamental research aspects on4. Fundamental research aspects on. Seminars on different tonics			s: s. g urses. tests versities
110	Title and Con	tent	No of
Unit I	Wave optics: Interference: Planar w	vave description of light, two-beam	Lecture Hours 13
	interferometer. Diffraction: Kirchho diffraction, Fresnel and Fraunhofer aperture, single and multiple slit diffrac	ff's diffraction theory, regimes of diffraction, rectangular slit, circular ction	liours
Unit-II Lasers: Light amplification, Spatial and temporal coherence, Threshold condition, Rate equations for 2 and 3 level systems, Laser pumping requirements, Output coupling, Cavity modes, quality factor, Mode selection and mode locking, Q-switching. Some laser systems: He-Ne, Nd:YAG, Dye lasers Semiconductor lasers		13 Hours	
Unit-III	Non-linear OpticsA : Interaction of a dielectric susceptibility, nonlinear optiwave equations of Nonlinear medium expressions for isotropic and ani susceptibility of Non-linear medium, effects: Pockel effect, Kerr effect-Sing Modulation.	radiation with a dielectric medium, cal effects, nonlinear optical materials, Time Domain and Frequency domain sotropic medium, Polarization and Kramers-Kronig relation, Electro-optic le Phase Modulation and Cross Phase	13 Hours
Unit-IV	Non-linear Optics B :Nonlinear Abs Absorption and Two Photon Absorpt anisotropic medium, second harmoni Up-Conversion, Optical Difference harmonic generation: Four wave mix Saturable Absorbers.Z-scan Measurer Experimental Method of Z-scan Measurer	orption: Theory of Single Photon ion, Three wave coupled equations in c generation: Optical Sum Frequency: Frequency: Down-Conversion, third ing, Saturable Absorbers and Reverse nent of Nonlinear Optical Parameter: rement.	13 Hours
 References 1. Optical Electronics by A. Ghatak and K. Thyagarajan, Cambridge University Press, 2004 2. Optics –Principles and Applications by K. K. Sharma, Academic Press, MA, 2006 3. Optics 4th Ed. by E. Hecht, Addison-Wesley, NY, 2001 4. Introduction to Modern Optics(2nd Ed), by G. R. Fowles, Dover 5. Principles of Optics by Born and Wolf. 6. Schaum's Outline of Theory and Problems of Optics, E. Hecht, McGraw-Hill 7. Laser Fundamentals, Silfvast, Cambridge Press, 1998 8. Lasers and Nonlinear Optics: B.B., Laud, 2/e, New Age International (P) Publishers, 2000 			0

Paper Code: P 402			
	Paper Title: Advanced Atomic, Molecu Number of	lar and Optical Physics (Elective – 04) Credits: 04	
After the be able to 1. A vi 2. D SI 3. D SI 4. A co	Course Outcomes: completion of the course, students will o: n extensive understanding on brational and electronic spectroscopy. etailed understanding of NMR bectroscopy etailed understanding of ESR bectroscopy n introductory course on ontemporary topics on Laser bectroscopy.	 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to com Pre-recorded lectures & Open book Study visits at facility centers at unitiand national research institutes. Seminars on different topics 	s: s. g urses. tests versities
	Title and	l Content	No of Lecture Hours
Unit I	Vibrational and electronic spectroscopy symmetry, Point Groups, Character tab and dipole moments, Polyatomic vi selection rules for IR and Raman spect and Hunds coupling cases, Vibrat (diatomics), Dissociation and pre-diss states.	v of polyatomics: Elements of molecular les for C_{2v} , C_{3v} and $C_{\infty v}$ groups, symmetry brations, Normal modes, Vibrational rra.Molecular Orbitals, Electronic states ional structure inelectronic spectra sociation-mixing of Born-Oppenheimer	13 Hours
Unit-II	Spin resonance spectroscopy-A : Bas resonance condition,Relaxation process and spin-spin relaxation, Linebroade Angle Spin (MAS) experiment, chemic spectra, nomenclature for spin s magneticequivalence of nuclei. Technic in bulk materials,continuous wave, p NMR Instrumentation,Chemical analysi	sic principles NMR absorption and sess: concepts of spin-lattice relaxation ning and dipolar interaction, Magical cal shift, spin-spin coupling,First order ystems, Chemical equivalence and ques for observing nuclear resonances ulsed and FT NMR, Block diagram of s using NMR.	13 Hours
Unit-III	Spin resonance spectroscopy-B : Electriconcepts of ESR, characteristics of a hyperfine interaction, SpinHamiltonian equivalent and non-equivalent set of principles of NQR, nuclear quadrupole of NQR. Electron Nuclear Double Reson	on spin and magnetic moment, Basic g-factor and its anisotropy, nuclear , ESR of organic and inorganic radicals: fnuclei, experimental technique. Basic interaction,fundamental requirements ance(ENDOR)-generaltreatment.	13 Hours
Unit-IV	Precision spectroscopy of atoms: Sub beams and reduction of Doppler wid Saturation Absorptionspectroscopy, H atoms- Doppler cooling, polarizationgr and RF traps, Single ion motion in a Pe jumps	Doppler laser spectroscopy- Molecular dth using collimator, Lamb dip and Elementary ideas of laser cooling of adient cooling, MOTIon Traps- Penning nning trap, Side band cooling,Quantum	13 Hours
Reference 1. P 2. S 3. F 4. M	es nysics of atoms and molecules, Bransden ducation,2004 ymmetry of Atoms of Molecules - Randhy undamentals of Molecular Spectroscopy, odern Spectroscopy, J.M. Hollas, John Wi	a and Joachain, (2nd Edition) Pearson wa Banwell and McCash, Tata McGraw Hill, iley, 1998.	1998.

- 5. Molecular Quantum Mechanics, P.W. Atkins and R.S. Friedman, 3rd Edition, Oxford Press(Indian Edition), 2004
- 6. Vibrational Spectroscopy F A Cotton.
- 7. Spectra of Atoms and Molecules, P. Bernath, Oxford Press, 1999
- 8. Molecular Spectroscopy, J.L. McHale, Pearson Education, 1999
- 9. Atomic Physics, C.J. Foot, Oxford University Press, 2008
- 10. Introduction to Magnetic Resonance Spectroscopy: ESR, NMER NQR, II Edition, D. N. Sathyanarayana, I.K. International Publishing House Ltd. 2014.
- 11. Basic Principles of Spectroscopy: Raymond Chang, McGraw-Hill Kogakusha Ltd.

Paper Code: P 402			
Paper Title: Advanced Materials Science (Elective – 05)			
	Number of	Credits: 04	
After the com be able to: 1. Empha aspect 2. An int	asize on the nature and material so of metals and alloys roductory towards the polymer	 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods 	s. 5.
scienc 3. A bird 4. Gener mater	e eye view on ceramics and glasses. al description on Composite ials.	 Hands on experiments related to con Pre-recorded lectures & Open book Study visits at facility centers at univ and national research institutes. Seminars on different topics 	irses. tests versities
	Title and Con	tent	No of Lecture Hours
Unit I Met Hot Oth Rec Hea Sup Allo Pur Am	tals &Alloys: Processing of Metals a & Cold Rolling of Metals & Alloys, her Metal- Forming Processes. So covery & Recrystallization of plass avily Cold- Worked Metal before H ber plasticity in Metals, Nanocrystall bys, Copper Alloys, Magnesium, pose Alloys and Application- Ir orphous Metals, Biometals.	and Alloys - Casting of Metals & Alloys, Extrusion of Metals & Alloys, Forging, Iid-Solution Strengthening of Metals, tically Deformed Metals, Structure of Reheating, Recovery, Recrystallization, ine Metals. Low Alloy Steels, Aluminum Titanium and Nickel Alloys, Special intermetallics, Shape Memory Alloys,	13 Hours
Unit-II Ele pol ind nur che reg pol ison blo	ments of Polymer Science: Mono ymers. Syntheses of polymers – cha ustrial polymerization methods. A nber and viscosity, size of polymer mical, geometric, random, alternat ular polymers. Phase transition-p ymer crystallinity-degree of cry merism. Processing of Plastic Mat w, extrusion, spinning.	mers – Polymers – Classification of in polymerization, step Polymerization, Average molecular weight – weight, molecule.Microstructure of polymers – ting, block and graft polymers, stereo olymer melting and glass transition; stallinity, crystallization and stereo terials-Molding-compression, injection,	13 Hours
Unit-III Cer Pre trac pie: Me refi bor and	amics and Glasses: Ceramics and paration-forming and thermaltre ditional and engineering, zoelectricproperties of ceramics wi chanical properties – strength, tou cactory materials.Glasses: Preparat rates, silicate, oxide, metallic and se chemically strengthened glass.	their structure – Silicate structure, atments, Classification of ceramics- dielectric, ferroelectric and th specific examples, ceramic magnets, ghness, fatigue failure, abrasion. Basic ion and structure, Types of glasses – emiconducting glasses; tempered glass	13 Hours
Unit-IV Cor me ma pol app ma disp con	nposite Materials: General Introd tals, ceramics, Reinforcing material king materials, structure,compos ymer-concrete composites, fabrica plications of polymer matrix compos trix composites and carbon fibre persion strengthened, particle rein nposites with fabrication, interface,	uction, Matrix Materials – polymer, s – fibers, particles, concrete-concrete sition, properties and applications, ation, structure, interface, properties, sites, metal matrix composites, ceramic composites, wood-plastic composites, aforced, fibre and laminate reinforced properties and applications.	13 Hours

- 1. Textbook of Polymer Science, Fred.W.Billmeyer, John Wiley & Sons, Inc (1984)
- 2. Polymer Science, V.R.Gowariker, N.V.Vishwanathan, JayadevShreedhar, Wiley Eastern (1987).
- 3. Electronic properties of Materials Rolf E.Hummel, Springer Verlag, Springer Verlag (1985).
- 4. Foundations of Materials Science and Engineering-William F.Smith, McGraw Hill International Editions, (1988).
- 5. Elements of Materials Science and Engineering, Lawrence H. Van Vlack, Addison Wesley (1975).
- 6. Introduction to Ceramics W.D.Kingery, H K Bower and U R Uhlman, John Wiley (1960)

Paper Code: P 402			
Paper Title: Advanced Mathematical Methods of Physics (Elective – 06)			
After the be able to 1. So in a 2. Ai a 3. Aj do 4. En co st	Course Outcomes:Suggestere completion of the course, studentswill• Lecture cumto:• ICT based leadcolve solutions for homogeneous and• Demonstratinhomogeneous differential equation• Demonstratiand application of fluid mechanics• Group discusanalyze and apply tensor notations and• Hands on explication of spectral theory andetailed description on operators• Pre-recordedEmphasize on group theory and• Study visits aorrelate space groups with the crystal• Seminars on	d Pedagogical Processes: demonstration methods arning on experiments ssion & Problem-solving periments related to cour d lectures & Open book to at facility centers at unive research institutes. different topics	rses. ests ersities
	Title and Content		No of Lecture Hours
Unit I	Green's functions and integral equations: Boundary Sturm-Liouvilledifferential operator, Green's function problems, discontinuity in thederivative of Green's fu Green's functions, Construction of Green'sfunctions solutions of inhomogeneous differential equations, Eig of Green's function. Examples of linear integral equation kind, Relationship between integral and differential equa Fredholm and Volterra integral equations by Neuman se of successive approximations), Separable kernels, method.	value problems, The of one-dimensional nctions, Properties of in special cases and genfunction expansion ons of first and second lations, Solution of the eries method (method Fredholm alternate	13 Hours
Unit-II	Tensors and Spaces: Definition of tensors, contra v components of tensors, raising and lowering of tensor inner products and contraction of tensors, Quoti antisymmetric tenors, Euclidian Spaces Norms, Orth complements and its projections, Best approximation Euclidean space by elements in a finite dimensional sub- – Geometry of Hilbert spaces, Riesz Lemma, Orthor Products of Hilbert Space, Banach Spaces –Definitions and Double Duals, The Hann- Banach Theorem, Operation The Baire Category Theorem and its consequences.	rariant and covariant r indices, sum, outer, ent law, symmetric, nogonality orthogonal on of elements in a space - Hilbert Spaces normal Bases, Tensor and Examples, Duals ons on Banach Spaces,	13 Hours
Unit-III	Spectral Theory and Unbounded Operators: The spectral functional analysis, Spectral projections, Spectral Theore Self adjointness, Stone's Theorem, Quadratic forms, Conunbounded operators, The Trotter product formula, Pola closed operators, Tensor Products.	Measures, continuous em, Symmetric and vergence of ar decomposition for	13 Hours
Unit-IV	Group Theory : Lie Groups and Infinitesimal generators, algebra, Definition, properties and application, Young Di and irreducible representations, Schur's lemma, Elemen Continuous groups GL(n), SO(3), SU(2), SO(3,1), SL(2,C) and its complexifications.	Lie groups to Lie agrams, Reducible tary ideas of), Real Representation	13 Hours

- 1. Mathematical methods of physics J. Mathews and R. L. Walker, Second Edition, Addison-Wesley.
- 2. Mathematical methods for Physicists G. B. Arfken and H. Weber, Seventh Edition, Academic Press, 2012.
- 3. Linear Algebra and Group theory for Physicists K. N. Srinivasa Rao,
- 4. Mathematical Methods Barry Simons and Michel Reed, Academics Press (1980)
- 5. An Introduction to Tensors and Group Theory for Physicists Nadir Jeevanjee (2010)

Paper Code: P 402 (Elective- 07)			
Paper Title: Advanced Nuclear and Neutron Physics			
	Number of	Credits: 04	
	Course Outcomes:	Suggested Pedagogical Processes	5:
After the	completion of the course, students will	Lecture cum demonstration method	s.
be able t	0:	 ICT based learning 	
1. Understand in detail on the neutron • Demonstration experiments			
SC	ources	• Group discussion & Problem-solving	5
2. G	ain thorough knowledge on neutron	methods	
d	etectors and spectrometers	• Hands on experiments related to cou	irses.
3. A	detailed emphasis on the nuclear	Pre-recorded lectures & Open book	tests
re	eactors and programme in India.	• Study visits at facility centers at univ	versities
4. A	n overall perspective on neutron	and national research institutes.	
in	iteraction.	Seminars on different tonics	
	Title and Con	tent	No of
			Lecture
			Hours
Unit I	Discovery of neutron-properties of neutro	ons-neutron spin-classification of neutrons	13
	according to energy, radioactive sources-neutron sources, Po-Be, Ra-Be, Pu-Be,		Hours
Am- α -Bo neutron sources, photo neutron sources, accelerators as a source of			
	neutrons-mono energetic sources, nuclear	reactor as a source of neutrons- (p,n) and	
(d,n) mechanisms for neutron production.			
Unit-II Neutron detectors and spectrometers- Principle of neutron detection-thermal		13	
	neutron detectors-BF ³ counters-foil activation techniques-the long counter-fission		Hours
	chambers-threshold detectors-He ³ counters, scintillation spectrometers-LiI		
	spectrometer-sandwich spectrometer-the Bonner sphere-nuclear emulsions-time of		
	flight technique-proton recoilment-H ₂ gas proportional counters-proton radiators-		
	liquid organic scintillation spectrometers.		
Unit-III	Nuclear reactors-Neutron multiplication-	fission chain reaction-four factor formula-	13
	multiplication factor-slowing down of	f neutrons in matter-moderating ratio-	Hours
	diffusion of thermal neutrons, neutron	age, reactor control-effect of delayed	
	neutrons-research reactors-power reactors	s-nuclear reactor programme in India.	
Unit-IV	Neutron interactions with matter and	neutron shielding-neutron elastic and	13
	inelastic scattering, n-n and p-p scatterin	g, thermal capture- fast neutron reactions	Hours
	(n, α), (n, β), (n, γ)reactions-neutron	resonance-Breit-Wigner formula-neutron	
	cross-sections-neutron diffraction. Meth	hods of neutron absorption, choice of	
	shielding materials, neutron streaming an	d shielding experiments-reactor shielding.	
Referenc	es		
1. Nucleon-Nucleon Interaction, G.E. Brown and A.D. Jackson: North-Holland, Amsterdam,			
2. Nuclear Interaction, S. de Bendetti: John Wiley, New York, 1964.			
3. Physics of Nuclei and Particles, <i>P. Marmier and E. Sheldon:</i> Vol. I and II, Academic Press, 1969.			
4. Nuclear Physics- R. R. Roy and B. P. Nigam: Theory and Experiments, John Wiley, 1967.			

5. Introduction to Nuclear Reactions, G. R. Satchler: Macmillan Press, 1980.

Paper Code: P 403			
Paper Title: Space & Cloud physics (Elective – 08)			
	Number of O	Credits: 04	
Course Outcomes: Suggested Pedagogical Processes			5:
After the	completion of the course, students will	Lecture cum demonstration method	S.
be able to	0: atailad un daratan ding an nhusiaal	ICT based learning	
I. D	etailed understanding on physical	Demonstration experiments	
	spects that occur in space/atmosphere	Group discussion & Problem-solving	5
2. A 2 II	nderstand the basics of clouds and	methods	
5. U el	ucidates on experiments associated	Hands on experiments related to cou	irses.
W	th atmosphere	Pre-recorded lectures & Open book	tests
4. A	Qualitative picture on understanding	• Study visits at facility centers at univ	versities
th	ne mechanisms of Remote sensing.	and national research institutes.	
-		Seminars on different topics	
	Title and Cont	ent	No of
			Lecture
			Hours
Unit I	Space physics : Basics of ionospher	e formation, D-, E- and F-lavers,	13
	composition of the ionosphere effect	of terrestrial and solar radiation on	Hours
	earth's atmosphere photochemical	processes currents in jonosphere	
	electrical conductivity techniques of ic	processes, currents in ionosphere,	
	and Langmuin probas. Forth's magnet	is field and its sytemation into space	
	and Langmun probes; Earth's magnet	no neio ano its extension into space,	
	structure ofmagnetosphere, polar and	equatorial cross sections, potential	
	drops in magnetosphere, interaction of	solar wind with the geomagnetic field,	
	magnetospheric tail, radiation belts, tra	apping of charged particles, trajectory	
	of charged particles, trapped radiation.		
Unit-II	Monsoon over India: Morphology of	monsoon circulation, symmetric and	13
	asymmetricmonsoon, Formation of 1	monsoon disturbances, Structure of	Hours
	monsoon disturbances, Wind, tempera	ature and pressure distribution over	
	India in the lower, middle and upper a	atmosphere during pre. post and mid-	
	monsoon season: Intra-seasonal va	riability of monsoon. Inter-annual	
	variability of monsoon – anomalous o	ver India and Asia El Nino Southern	
	Oscillation and dynamical mechanism for	or their evistence	
IImit III	Cloud Druging and Atmographeric electric	siter Cloud marshalage Warm Cloud	10
Unit-III	Lioud Physics and Atmospheric electric	Lity: Cloud morphology, warm Cloud	13 Hours
	theory CCN Collision and Coalescence I	Process Formation of rain) Cold Cloud	nouis
	Microphysics (Ice Nucleation Hail for	mation Bergeron-Findeisen Process)	
	Structure and Dynamics of different	cloud systems: Shallow layer clouds.	
	Nimbostratus, Cumulus clouds, Thund	lerstorms and Tornadoes, Meso-scale	
	convective systems, Clouds in Hurrica	nes and cyclones, Orographic Clouds.	
	Cloud Seeding experiments.lons and	electrical conductivity, Fair weather	
	electricity, Electrical currents in	the atmosphere,Global Electric	
	Circuit.Electrical structure of storms,	Theories and experiments on Cloud	
	Electrification. Lightning discharges and	d mechanism, Lightning Electric fields,	
	lightning location systems. Upward light	ntning and sprites.Nitrogen fixation by	
	lightning.		1.0
Unit-IV	Remote Sensing:		13
	Principles and basic concepts of r	emote sensing, physics of remote	Hours

sensing.Effects of Atmosphere, Principles and Geometry of scanners, CCD arrays and platforms.Rainfall estimation techniques, cyclone analysis techniques & synoptic weather analysis using visible, Near Infrared.		
References		
1. Physics and Chemistry of Clouds: Dennis Lamb		
2. Physics and Dynamics of Clouds and precipitation: P. K. Wang		
3. Physics of Precipitation: W. E. Smith.		
4. Advanced space plasma physics: R. A. Treumann		

	Paper Code: P 403		
Paper Title: Physics of Solids(Elective – 09)			
	Number of Credits: 04		
 Course Outcomes: After the completion of the course, studentswill be able to: Overall perspective of imperfection in crystals, Burger vector and dislocation in crystals A detailed analysis of lattice vibrations and phonons, thermal properties such as specific heat capacities Understanding of inter atomic forces and bonding in solids, an introduction to diffusion in solids. Suggested Pedagogical Processes: Lecture cum demonstration methods. ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to courses Pre-recorded lectures & Open book tests Study visits at facility centers at universit and national research institutes. Seminars on different topics 		esses: thods. living to courses. book tests t universities s.	
	Title and Content	No of Lecture Hours	
Unit I	Imperfections in crystals: Classification of imperfections, crystallographic imperfections, point defects – concentrations of Schotky and Frenkal defect line defects- edge dislocations, screw dislocation, Burgervectors, dislocation motion, stress fields around dislocations, observation of dislocations, plane defects- grain boundaries, tilt and twin boundaries –surface imperfections-	13 ts, Hours n	
Unit-II	 In crystal growth. Lattice vibrations and phonons: Elastic vibrations of continuous media, Grovelocity of harmonic wave trains, Wave motion of one dimensional atomic lattice, lattice with two atomswith primitive cell, Some facts about diatomic lattice, number of possible normal modes of vibrations in a band, phonons, momentum of phonons, Thermal properties: Classical calculations of lattice specific heat, Einstein theory of specificheats, Debye's model of lattice specific heat, Debye approximation, An-harmonic crystalinteractions, thermal expansion, lattice thermal conductivity of solids- Umklapp process. 	up 13 Hours	
Unit-III	 Band theory and Diffusion in solids: Elementary ideas of formation of ener bands. Bloch function. Kronig-Penney model, number of states in a band, Energy gap. Distinction between metals, insulators, and intrinsic semiconductors. Concept of holes, equation of motion for electrons and hol effective mass of electrons and holes. Diffusion in solids: Fick's law of diffusion, Determination of diffusion coefficients, diffusion couple. 	gy 13 Hours es,	
Unit-IV Reference	Optical properties: Absorption process, photoconductivity, photoelectric effect, photovoltaiceffect, photoluminescence, color centers, types of color centers, generation of color centerproperties- models and applications. Elastic constants: Stress components. Analysis of elastic strains, elastic compliance andstiffness constants, elastic energy density, stiffness constant of cubic crystals.	13 Hours ts	

edition, New age International publishers, 2001

- 2. Solid State Physics- A. J. Dekker, Macmillan India Ltd., Bangalore, 1981.
- 3. Solid State Physics- C. Kittel, V Ed., Wiley Eastern Ltd., 2013.
- 4. Elementary Solid state physics,- M.A. Omar, Addissonwesley, New Delhi,2000.
- 5. Solid state Physics- S.O. Pillai. New age international publication. 2002.
- 6. Solid state Physics- M.A. Wahab, Narosa publishing house, New Delhi.- 1999.
- 7. Modern theory of Solids- Seitz.
- 8. Semiconductors Devices-Physics and Technology- S.M. Sze.
- 9. Introduction to Solids L. Azoroff.

10. Solid State Physics- H.C. Gupta- Vikas publishing house, New Delhi.-2002.

Paper Code: P 403			
Paper Title: Crystal and Semiconductor Physics(Elective – 10)			
	Number of Credits: 04		
After the be able to 1. To fu 2. To so 3. To se 4. To	 Suggested Pedagogical Processes Lecture cum demonstration method ICT based learning Demonstration experiments Group discussion & Problem-solving methods Hands on experiments related to cou pre-recorded lectures & Open book for study visits at facility centers at univand national research institutes. Seminars on different tonics 	s. s. urses. tests zersities	
	Title and Content	No of	
		Lecture Hours	
Unit I	Crystal Physics: Introduction-symmetry elements of crystals-concept of point groups-derivation of equivalentpoint position-experimental determination of space groups-powder diffraction interpretation expression for structure factor-analytical indexing-Weisenberg and rotating crystal method. Determination of relative structures-amplitudes from measured intensities-Multiplicity factor-Lorentz polarization factor. Reciprocal lattices-concept of reciprocal lattice-geometricalconstruction-relation between reciprocal lattice vector and inter-planar spacing-properties of reciprocal lattice.	13 Hours	
Unit-II	Energy bands in solids : Nearly free electron approximation-Tight binding method of energybands (applications to cubic system)- orthogonalized plane wave method (OPW)-Wigner-Seitzmethodpseudo-potential method. Fermi surface studies and Brillouin zones characteristics ofFermi-surfaces-effect of electric and magnetic field on Fermi surface-anomalous skin effect cyclotronresonance-De Hass-van Alphen effect	13 Hours	
Unit-III	Semiconductors: Fermi level in intrinsic and extrinsic semiconductors- temperaturedependence-carrier concentration-Charge neutrality equation- mobility-diffusion-Nernst-Einstein equation-Donor states-Acceptor states- Thermal ionization of donors and acceptors. Conductivity in semiconductors.Devices-p-n-junction-fabrication-contact potential- equilibrium fermi levels-space charge at ajunction-depletion width- I-V characteristics-generation-recombination-continuity equation rectification-saturation-Zener break down. Negative conductive device-tunnel diode-Transistors (bipolar)-energy band diagram.	13 Hours	
Unit-IV Beference	Films and surfaces: Preparation-TVD, CVD-laser ablation-MBE -Study of surface topography by multiple beaminterferometry, conditions for accurate determination of step height and film thickness (Fizeaufringes).Electrical conductivity of thin films, difference of behavior of thin films from bulkmaterial, Boltzmann transport equation for a thin film (for diffuse scattering), expression forelectrical conductivity for thin film. Enhancement of magnetic anisotropy due to surfacepinning.	13 Hours	
References 1. A.R.Verma and O.N. Srivastava: Crystallography Applied to Solid State Physics, 2nd edition, New age International publishers, 2001 2. Solid State Physics- A. I. Dekker, Macmillan India Ltd., Bangalore, 1981.			

- 3. Solid State Physics- C. Kittel, V Ed., Wiley Eastern Ltd., 2013.
- 4. Elementary Solid state physics, M.A. Omar, Addissonwesley, New Delhi, 2000.
- 5. Solid state Physics- S.O. Pillai. New age international publication. 2002.
- 6. Solid state Physics- M.A. Wahab, Narosa publishing house, New Delhi.- 1999.
- 7. Modern theory of Solids- Seitz.
- 8. Semiconductors Devices-Physics and Technology- S.M. Sze.
- 9. Introduction to Solids L. Azoroff.
- 10. Solid State Physics- H.C. Gupta- Vikas publishing house, New Delhi.-2002.

Paper Code: P 404				
	Paper Title: Properties and Applications of Thin Films (Elective – 11)			
	Number of Credits: 04			
After the be able to 1. A 2. To pr 3. A pr 4. En fil	Course Outcomes:Suggested Pedagogical Processecompletion of the course, studentswillo:Lecture cum demonstration methoddetailed characterization on thinfilms.Demonstration experimentso understand and the transportDemonstration experimentsroperties of thin films.Group discussion & Problem-solvingdetailed perspective on opticalHands on experiments related to coroperties of thin films.Pre-recorded lectures & Open bookstudy visits at facility centers at uniand national research institutes.	s: ls. g urses. tests versities		
	Title and Content	No.of		
		Lecture Hours		
Unit I	Chemical and Physical Characterization of Thin Films: Auger Electron	13		
	Spectroscope (AES), Secondary Ion Mass Spectroscopy (SIMS), Secondary Neutral Mass Spectroscope (SNMS) and Rutherford Back Scattering Spectroscope (RBS).UV-Vis-NIR and IR spectrophotometers, Fourier Transform Infrared Spectroscope (FTIR) and Raman spectroscope.Tolansky technique, Talystep (styles) method, Quartz crystal microbalance, Stress measurement by optical method. Gravimetric method	Hours		
IInit-II	Transport Properties of Thin Films: Theory of growth of thin films: Nucleation	13		
	condensation, Capillarity model, Atomistic model, comparison of models, various stages of film growth. Metallic Films: Sources of resistivity in metallic conductors – sheet resistance and temperature coefficient of resistance of thin films – Influence of thickness on the resistivity of structurally perfect thin films – Fuchs Sondhemier theory – Hall effect – Annealing, agglomeration and oxidation.Dielectric films: Electrical conduction in insulator films – Schottky emission – Tunneling, Poole-Frenkel emission.	Hours		
Unit-III	Optical Properties of Thin Films: Reflection and transmission at an interface – Reflection and transmission by single film – Reflection from an absorbing film - Multilayer films – Optical absorption – Determination of optical constants by Ellipsometry.Optical devices: Beam splitters – Reflection and antireflection coatings- Optical filters: Neutral filters, Broad band filters, Narrow band filters – Thin film polarizers.	13 Hours		
Unit-IV	Applications of Thin Films: Photolithography: Photoresists, Mask and pattern generation. Thin film resistors – Thin film capacitors – Thin film diodes and transistors – Thin film solar cells, Thin film micro batteries – Thin film sensors: Gas sensors, Bolometers – Transparent conducting oxide coatings - Thin films for superconducting devices – Metallurgical coatings. Hard coatings andTribologicalcoatings.	13 Hours		
Referenc	es			
1. T 2. P 3. H 1970	 Thin Film Fundamentals, A. Goswami, New Age International. Publications, 1996 Preparation of Thin Films, J. Goege, Marcel Dekker, New York, 1992. Hand Book of Thin Film Technology, L.I. Maissel and R.L. Glang, McGraw HillBook Content (1970) 			
4. T	'hin Film Phenomena, K.L. Chopra by McGraw Hill book Co., New York, 1969.			
5. I	ntroduction to Semiconductor Materials and Devices, M.S. Tyagi, John Wiley & So	ns Pvt.		

Ltd. Singapore, 2000.

- 6. Thin Film Solar Cells, K.L. Chopra and S.R. Das, Plenum Press, New York, 1983.
- 7. The Materials Science of Thin Films, M. Ohring, Academic Press, New York, 1992.

Paper Code: P 404			
Paper Title: Physics of Nanomaterials (Elective – 12)			
	Number of	Credits: 04	
Course Outcomes: Suggested Pedagogical Processes:			5:
After the	completion of the course, studentswill	Lecture cum demonstration method	S.
1 0	u: vorall porspective of papematerials in	ICI based learning	
1. U fi	eld of hydrogen storage, gas sensors	Demonstration experiments Consultance & Database end income	
21	nd storage devices	Group discussion & Problem-solving mothods	5
2. A	qualitative picture on optical	Incurous	Maga
2. n	roperties of nanomaterials	 Hallus oli experiments related to col Dra recorded lectures 8 Open hooks 	li ses.
3. A	birds eve view on concurrent	 Pre-recorded rectures & Open book Study visits at facility contars at univ 	lesis
te	echniques in synthesis of	• Study visits at facility centers at univ	/ersities
na	anomaterials.	 Seminars on different tonics 	
4. A	n introduction towards methods to	• Seminars on unterent topics	
as	ssess the nature of nanomaterials.		
	Title and Con	tent	No of
			Lecture
			Hours
Unit I	Introduction to nanomaterials: D	efinition, reason for interest in	13
	nanomaterials, classificationof nan	ostructures – 1D, 2D and 3D	Hours
	confinement.Gas reactive applications	of nanostructured materials: Catalysis,	
	electrocatalysisprocesses, impact of	nanostructure, Gas Sensors: physical	
	principles of semiconductorsensors	and nanostructure design, Hydrogen	
	storage: properties of hydrogen storage	e compounds and nanostructuredesign.	
	and application and application and	ons: Domain and domain waits - buik	
	anumatiostructures, magnetization pro	cesses in particulate nanomagnets and	
IInit-II	Overview of semiconductors: Electro	onic hand structure concent of the	13
ome n	effective mass ontical processes direct	and indirect hand gansemiconductors	Hours
	exciton formation superlattice-heterost	tructure.	nourb
	Ouantum size effect: Ouantum confiner	nent in one dimension: quantum wells.	
	Electronconfinement in infinitely dee	p square well square, square well of	
	finite depth, opticalabsorption in quan	tum well in the case of heterostructure	
	consisting of thin layer of GaAs sandw	viched between thick layers of AlGaAs.	
	Quantum confinement in 2 dime	ensions: quantum wires, Quantum	
	confinement in 3dimensions: quantum	dots.	
	Tunnelling transport: T-matrices for po	tential step and square barrier, current	
	andconductance. Resonant tunneling.		
Unit-III	Methods for preparation of Nano-mater	ials:	13
	Bottom Up: Nano Particles (metal and	semiconductor) – nucleation – growth	Hours
	– cnemical bathdeposition – capping te	cnniques.	
	Nano Structures: quantum dots, q	uantum well structures- Thin film	
	MOCUD Drugical vanages den agiti aufo	m epitaxy methods of growth -MUVPE	
	Top Down: Ball milling details sig	n nanoparticles.	
	nlanetary mills attrition mills Floctro	e and unite of mining, slidker mills, n Beam Lithography – resists, uso of	
	nositive and negative resists - lift	n beam, bidiography – resists- use of f process Ion-heam lithography-main	
	chemical reaction - use Self-assemble	led molecular materials, principles of	
	self-assembly – micellar and vesici	larpolymerization – self organizing	
	inorganic nanoparticles. Langmuir Bloc	lgett techniques.	

Unit-IV	Characterization of nanomaterials:	13	
	Diffraction techniques: X-ray Diffraction (XRD) – Crystallinity,	Hours	
	particle/crystallite sizedetermination and structural analysis Microscopic		
	techniques: Scanning Electron Microscopy (SEM) – Morphology, grain size and		
	EDX; Transmission Electron Microscopy (TEM) - Morphology, particle size		
	and electron diffraction. Scanning probe techniques: Scanning Tunneling		
	Microscopy (STM) – surface imaging and roughness ,Atomic Force Microscopy		
	(AFM) - surface imaging and roughness; otherscanning probe techniques.		
	Spectroscopy techniques: Photoluminescence – Emission (PL) and Excitation		
	(PLE)spectroscopy; Infrared (IR) and Raman spectroscopy; X-ray Absorption		
	(XAS).		
References:			
1. Introd	uction to Solid State Physics, Charles Kittel, VII edition, 1996		

2. Nanostructured Materials-Processing, Properties and Applications, Edited by Carl. C. Koch, William Andrew Publishing, Norwich, New York, USA, 2004.

3. Nanoscale Science and Technology, Edited by Robert W Kersall, Ian W Hamley and Mark Geoghegan, John Wiley and Sons, UK, 2005.

4. Physics of Semiconductor Nanostructures, K P Jain, Narosa, 1997.

5. Nanostructures and Nanomaterials-Synthesis, Properties and Applications, 2nd Edition by Guozhong Cao and Ying Wang.

6. Nanomaterials and Devices by Donglu Shi, ZizhengGuo and Nicholas Bedford.

Paper Code: P 404			
Paper Title: Photonics(Elective – 13)			
Number of Credits: 04			
 After the completion of the course, studentswill be able to: 1. Learn detailed description on fibre optic components. 2. Understand the science of integrated fibre optic materials. 3. Emphasize on optical signal processing. 4. A detailed description on photonic crystals. Suggested Pedagogical Processes Lecture cum demonstration methods ICT based learning Demonstration experiments Group discussion & Problem-solvin methods Hands on experiments related to components at unit and national research institutes. Seminars on different topics 		s: s. g urses. tests versities	
	Title and Cont	cent	No of
			Lecture Hours
Unit I	Fibre Optic Components and Sensors: Connector principles, Fibre end preparation, Splices, Connectors, Source coupling, Distribution networks, Directional couplers, Star couplers, Switches, Fiber optical isolator, Wavelength division multiplexing, Time division multiplexing, Fiber Bragg gratings. Advantage of fiber optic sensors, Intensity modulated sensors, Mach-Zehnder interferometer sensors, Current sensors, Chemical sensors – Fiber optic rotation sensors. Optical biosensors: Fluorescence and energy transfer sensing, molecular beacons and optical geometries of bio-sensing, Bio-imaging, Biosensing.		13 Hours
Unit-II	Integrated Optics: Introduction – Planar wave guide – Channel wave guide – Y- junction beam splitters and couplers - FTIR beam splitters – Prism and grating couplers – Lens wave guide – Fabrication of integrated optical devices - Integrated photodiodes – Edge and surface emitting laser – Distributed Bragg reflection and Distributed feedback lasers - Wave guide array laser.		13 Hours
Unit-III	Optical Signal Processing: Introduction, Effect of lens on a wavefront, Fourier transform properties of a single lens, Optical transfer function, Vanderlugt filter, Image spatial filtering, Phase-contrast microscopy, Pattern recognition, Image de-blurring, Photonic switches, Optical transistor, Optical Gates-Bistable systems, Principle of optical Bistability, Bistable optical devices, Self electro-optic effect device.		13 Hours
Unit-IV	Photonic Crystals: Introduction-Features of photonic crystals, Methods of fabrication, Photonic crystal optical circuitry, Nonlinear photonic crystals, Photonic crystal fibers, Photonic crystals and optical communications, Photonic crystal sensors.		13 Hours
 References: 1. Fibre Optic Communication, Joseph C. Palais, Pearson Education Asia, India, 2001 2. Introduction To Fibre Optics, A.Ghatak And K.Thyagarajan, Cambridge University Press, New Delhi, 1999 3. Optical Guided Wave Signal Devices, R.Syms And J.Cozens. Mcgraw Hill, 1993. 4. Optical Electronics, A Ghatak and K. Thyagarajan, Cambridge University Press, New Delhi, 1991 5. Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, John Willy and Sons, 1991 6. Introduction to Fourier Optics, Joseph W. Goodman, McGraw-Hill, 1996. 7. Nanophotonics, P.N.Prasad, Wiley Interscience, 2003. 8. Biophotonics, P.N.Prasad, Wiley Publications, 2004. 			