

(Autonomous),

Jayanagar, Bangalore.

Institutional Distinctiveness

The motto of the National College reflects the laudable principle of the instituition. It speaks volumes about the goal of the institution that aims at creating a centre of academic excellence. We, at National College, Jayanagar have been trying to adopt Outcome-based methods in the teaching-learning and evaluation process to check whether each student has achieved the specified outcomes by the end of the educational experience. The focus on outcomes creates a clear expectation of what needs to be accomplished by the end of the year of the course. So that the faculty will be able to structure their lessons according to the students' needs. Hence, the IQAC of the college has organised Workshops in view of training the faculty to make their teaching very effective.

A Workshop on Outcome Based Education was organized by the IQAC of National College on 16th April, 2021 at 10:30 AM in Multimedia Hall. Dr. Chandrashekar and Dr. Vishal, Associate Professors from the Department of Master of Computer Applications of R.V. College of Engineering, Bangalore were the resource persons.

In Continuation with the Workshop on Outcome Based Education held on 16th April, 2021, the departments of English, Kannada, History and Commerce were asked to map the question papers with Course Objectives and present the same in Multimedia Hall on 7th August, 2021 from 1PM to 2PM. The workshop was organized to enrich the faculty members with Outcome Based Education and it was very interactive with the active participation of all the other departments of National College, Jayanagar, Bangalore.

(Autonomous)

Jayanagar, Bangalore

Department of Post Graduate Studies and Research in Physics

INDIVIDUAL COURSE OUTCOME (CO) and BLOOMS TAXONOMY (BLT)

MSc PHYSICS - 3rd Semester

CO Levels

Level	1		Level 2	Level 3					
Describe/Identify	List	Explain	Predict	Compute	Illustrate				
Name/Recognise	What/Where	Compare	Distinguish	Use/Deduce	Classify/Categorize				
Find	Write/Draw	Discuss	Summarize	Draw	Solve				
Level	4		Level 5	Level 6					
Characterize	Identify	Justify	Recommend/Interpret	Formulate	Design/Develop				
Examine	Organise	Estimate	Evaluate /Calculate	Invent	Construct				
Derive	Investigate	Prioritise	Decide/Choose	Compose	Predict				

BTL levels

Blooms Taxonomy	Levels
Level 1 & Level 2	Low (L)
Level 3 & Level 4	Medium (M)
Level 5 & Level 6	High (H)

P301: Condensed Matter Physics

SI.	Question	CO	Marks	BTL
NO. 1	What is the stand on frate E while?	T 1	5	т
1	What is the structure factor Explain?		5	
2	Explain Wiedemann Franz law and its limitations.	L2	5	L
3	Explain mobility of charge carriers in intrinsic semiconductor.	L2	5	L
4	Explain persistent currents in superconductors and mention few	L2	5	L
5	Explain polor and non-polor dialoctrics	1.2	5	T
5	Explain polar and non-polar dielectrics.		5	
0	Distinguish between lerromagnetism and antiferromagnetism.		5	
	Cubic (BCC) and Face centered cubic (FCC) crystal.	L3	10	Μ
8	Derive an expression for electron in 1D period square well	L4	10	М
0	potential using Kronig Penny Model.	т. 4	10	м
9	Derive an expression for carrier concentration for electron in intrinsic semiconductor	L4	10	М
10	Discuss BCS theory of superconductors in detail.	L2	10	L
11	Derive an expression for the Lorentz field for linear array of	L4	10	М
	atoms in an electric field.			
12	What is paramagnetism? Describe Langevin theory of	L4	10	М
	paramagnetism. Obtain an expression for magnetic			
	susceptibility employing classical theory.			
13	Assuming the lattice points of the lattice parameter 'a' in a bcc	L5	5	Н
	structure are occupied by spherical atoms of radius 'r'.			
	Calculate (i) the free volume per unit cell (ii) determine the radii			
	of the largest sphere that will fit into the voids produced by the			
	lattice point atoms not occupying in the full volume of the cell.			
14	The density of silver is 10.5×10^3 kg/m ³ . The atomic weight of	L5	5	Н
	silver is 107.9. Assuming that each silver atoms provides one			
	conduction electron, calculate the density of electrons. The			
	conductivity of silver at 20°C is $6.8 \times 10^7 \ \Omega m^{-1}$. Calculate the			
	mobility of electrons in silver.			
15	A copper wire has a resistivity of $1.8 \times 10^{-8} \Omega m$ at room	L5	5	Н
	temperature (300K). Assuming copper is very pure, estimate the			
	resistivity at 700°C and the percentage change in the resistivity			
	from room temperature to 700°C			

Blooms Taxonomy Outcome

Blooms Taxonomy	Course Outcome (CO)	Levels	Marks Distributed	Weightage (%)	Marks for 10
Level 1 & Level 2	CO1	Low (L)	40	38.09%	3.809 ≈ 4
Level 3 & Level 4	CO2	Medium (M)	50	47.61%	4.761 ≈ 5
Level 5 & Level 6	CO3	High (H)	15	14.28%	1.428 ≈ 1

CO – PO Condensed Matter Physics (CMP) PG Physics – By Dr. R. Rajaramakrishna

1	A B	C	D	E	F	F	G	H	1	J	1	< L	M	N	0	Ρ	Q	R	S	T	U	V	W	
1	Faculty Name			Cou	rse					Sub								Paper Coo	P302	J	Paper	Title	CMP	1
2	Dr. R. Rajaramakrishna			P/	ART A	1						PART B				Part C	Ş	CO1 Mark	CO2	CO3	CO4	Total N	TOTAL MAI	IA
3		CO1	CO1	CO2	CO	03 0	03	CO4	CO1	CO2	CC	02 CO3	CO4	CO4	CO1	CO2	CO4	Unit 1	Unit 2	3	3 4	1	8 	1
4	Reg N Student Name	5	5	5	5	5	5	5	1	0 3	10	10 1	0 1	0 1	9 4	5	1	25	- 30	20	30	0		
5	1 Amrutha G	3	3	2	0	2	2	C)	2	5	5	0	0) з	3 9	3	10	19	4		36	47	7
6	2 DEEPAK HEBBAR V		3	2	2	0	0	4		6	6	6	0	4	0 9	2	1	20	16	0		45	53	3
7	3 Ganesh Prasad S	0)	3	2	3	3	.0)	7	7	7	7	0	3 3	3 3		13	19	13		45	68	3
8	4 Garima Sharma	4		0	4	5	5	C		8	8	0	8	0	8 4	1 0	4	16	12	18	12	2 58	82	2
9	5 Kavya J	1		5	5		3	5	5	9	7	8	0	8	3	3 0	3	17	. 20	i i	16	5 56	79)
10	6 Pavan Kumar	2	2	2	3	0	0	C		7	9	9	0	0	3	3 2	C	14	23	0		37	55	5
11	7 Sandhya S	4		4			4	4	1	8			9	8	9 5	6 0	4	21	0	13	25	5 59	80)
12	8 Shilpa				4	2			1	6	7		7	7	3	3	2	9	11	9		38	60)
13	9 Sharvani	4	1	3	4	3				7	7	7	7			2	2	14	. 20	10		46	70)
14	10																	0	0	0		0 0	C)
15		Merr	Analy	ti Criti	ical T	hinki	ing				59					1 8		CO W	ISE M	AX MAR	RKS	C		1
16	BLOOMS TAXONOMY	L - 1	, M-4,	5 H-5	, 6 (3	()	140								1	1		CO1	CØ2	CO3	CO4	C		
17	BLOOIVIS TAXONOIVIT	Rem	Apply	/ Eval	uate								1							()		C		
18		Unde	Analy	/zeCrea	ate											1				1		C		
19	BLOOMS TAXONOMY	1		2	2	2	2	2	2	3	4	4	2	4	4 5	5 5	5			(
20	QUESTION MAX MARKS	5	5	5	5	5	5	5	1	0 2	1.0	10 1	a 1	0 1	9 1	5	3	25	30	20	30	105		
21	Threshold	1	20)			1			20								10	12	8	12	2 42		
22	Competence Level of Question Paper	0														8				1		C		
23	No Of students Attained Threshold Lev	e CO1	CO2	CO3	B.				CO4	CO5					1			8	7	5		3 23		1
24																8		89%	78%	56%	33%	6		
25					Sco	ores	from	Stude	nt perf	ormand	ce							3	3	2		1		
26				CO	1 3	3																		
27				CO	2 3	3														L1	L2		L3	
28				CO	3 2	2				Stude	ent Tł	nreshold					Marks	No of stud	lents	10) 15	5	20)
29				CO	4 1	1				50 to	60						10 to 1	1 8	4	L.				
30										60 to	70						15 to 2	2 4	2	M				
31										70 +							20 to 3	3 2	2	н				

CO – attainment of Individual students details

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z
1	Dr. R. Rajaramak	rishna																								
2	Weightage		7.5				2.5																			
3	Max Marks		25		5	5	10																			
4					CO 1						CO2						CO3						CO4			
5	Reg No	Student Name	Marks	IA	Attend	Assignme A	Attend + As	CO1 attainment	Marks	IA	Attend	Assignme	Attend + A	CO1 attaiı	Marks	IA	Attend	Assignme	Attend + A	CO1 attair	Marks	IA	Attend	Assignme	Attend + A	CO1 attainment
6	1	Amrutha G	10	20	5	5	10	55%	19	20	5	5 5	10	82%	4	20	5	5	10	37%	3	20	5	5	10	34%
7	2	DEEPAK HEBBAR V	20	17	5	5	10	85%	16	17	5	5 5	10	73%	0	17	5	5	10	25%	9	17	5	5	10	52%
8	3	Ganesh Prasad S	13	23	5	5	10	64%	19	23	5	5 5	10	82%	13	23	5	5	10	64%	0	23	5	5	10	25%
9	4	Garima Sharma	16	24	5	5	10	73%	12	24	5	5 5	10	61%	18	24	5	5	10	79%	12	24	5	5	10	61%
10	5	Kavya J	17	23	5	5	10	76%	20	23	E.	5 5	10	85%	3	23	5	5	10	34%	16	23	5	5	10	73%
11	6	Pavan Kumar	14	18	5	5	10	67%	23	18	5	5 5	10	94%	0	18	5	5	10	25%	0	18	5	5	10	25%
12	8	Sandhya S	21	21	5	5	10	88%	0	21	5	5 5	10	25%	13	21	5	5	10	64%	25	21	5	5	10	100%
13	9	Shilpa	9	22	5	5	10	52%	11	22	5	5 5	10	58%	9	22	5	5	10	52%	9	22	5	5	10	52%
14	10	Sharvani	14	24	5	5	10	67%	20	24	5	5 5	10	85%	0	24	5	5	10	25%	2	24	5	5	10	31%
15																										
16			CO1	89%																						
17	CO evaluation	40	CO Attaini	3																						
18	со	4	1																							
19	Each CO	10)																							

CO – attainment of Individual students details as per Question paper competence

CO – PO attainment of CMP subject in Percentage

1	A B	C	D	E	F	G	Н	1	J	K	L	M	N	0	P
1 CC	01 CO2	CO3	CO4												
2	3	3 7	2	1											
3									Program Objectives (PO's)	CO 1	CO 2	CO 3	CO 4	PO Attainment	Attainment %
4								PO 1	Basic Knowledge, Law of Causality	2	2	2	2	2.25	75%
5		CO1	CO2	CO3	CO4			PO 2	Problem Analysis	3	3	3	3	2.25	75%
6	PO1	2	2 2	2	2 2	2	Scores from Student performance	PO 3	Design or development	3	3	3	3	2.25	75%
7	PO2		3 3	3	3 3	3 CO1	3	PO 4	Conduct or investigations for problems	3	2	2	3	2.2	73%
8	PO3		3	3	3 3	3 CO2	3	PO 5	modern tool usage	3	2	2	0	2.714285714	90%
9	PO4		3 2	2	2 3	CO3	2	PO 6	The scientist and society	2	2	2	0	2.666666667	89%
10	PO5		3 3	2	2 (CO4	1	PO7	Environment and Sustainablity	0	0	0	2	1	33%
11	PO6	2	2 2	2	2 ()		PO8	Ethics	0	0	0	0	0	0%
12	PO7	() (0 0	0 2	2		PO9	Individual and Team work	2	2	0	0	3	100%
13	PO9	2	2 2	2	0 0)		PO10	Communication	0	0	0	0	0	0%
14	PO12		3 3	2	2 3	3		PO 11	Project management and finance	0	0	0	0	0	0%
15								PO12	Lifelong learning	3	3	2	3	2.272727273	82%
16		No of	f Marks										PO Avg	2.289297739	77%
17		>75%	5 5	3					Program Educational Objectives (PEO's)	CO 1	CO 2	CO 3	CO 4	PEO Attainment	Attainment %
18								PEO	Impact on society	2	2	3	2	2.222222222	67%
19								PEO2	Design, Innoation	3	2	2	3	2.2	90%
20								PEO 3	Techically feasible solution	3	3	3	3	2.25	75%
21													PEO Avg	2.224074074	78%

	A	В	0
1	CO 1 Syllabus	POS	Levels
2	2 Crystalline state - periodic arrangement of atoms-lattice translation vectors	PO1	L
3	The basis and crystal structure, primitive and non-primitive lattice cell, Miller indices/Plane	PO1,PO2,PO9	M,M,N
4	fundamental types of lattice, -2d and 3-d Bravias lattice and crystal systems.	PO2,PO3,PO9	M,H,M
5	Elements of symmetry operationspoints and space groups-nomenclature of crystal direction	1 PO2, PO4, PO5	H,H,M
6	X-ray diffraction: Scattering of x-rays, Laue conditions and Bragg's law,	PO1,PO5,PO6,PO12	M,H,M
7	atomic scattering factor, geometrical structure factor, Reciprocal lattice and its properties.	PO2,PO5	H,H
8	3		
9			
1	0 CO 2 Syllabus	POS	Levels
1	1 Free electron model, Electrons moving in one dimensional potential well,	PO1, PO2	L,H
1	2 3-D potential well, quantum state and degeneracy, the density of states	PO1,PO2,PO4	M,H,M
1	3 Fermi-Dirac statistics, effect of temperature on Fermi distribution function, the electronic	PO2,PO4,PO12	H,M,M
1	4 Electrical conductivity of metals, relaxation time and mean free path,	PO1,PO2,PO4,PO5	L,M,M,
1	5 Band theory of solids: Elementary ideas of formation of energy bands. Bloch function	0 PO1,PO3,PO6	M,M,N
1	6 Kronig-Penney model, number of states in a band, Energy gap. Distinction between metals	PO2,PO3,PO6,PO9	H,M,M
	Insulators and intrinsic semiconductors.concept of holes, equation of motion for electrons	;	
1	7 and holes, effective mass of electrons and holes	PO1.PO2.PO3	L.M.H
1	8 CO 3 Syllabus	POS	Levels
1	9 Introduction to semi conductors, band structure of semi conductors,	PO1, PO3	L,M
2	0 Intrinsic and extrinsic semiconductors, expression for carrier concentration (only for intri	1 PO2, PO3, PO4	M,M,N
2	1 Ionization energies, charge neutrality equation	PO1,PO2,PO3	M,M,N
2	2 Conductivity-mobility and their temperature dependence, Hall effect in semiconductors.	P01,P02,P03,P04	M,H,H,
2	3 Superconductors: Critical temperature-persistent current-occurrence of super cond	PO1,PO2,PO3,PO5,P	CM,M,N
2	4 Non-ideal superconductors-Destruction of super conductivity by magnetic field -	PO1,PO3	M,M
-	Meissner effect- heat capacity-energy gap-microwave and infrared properties- Isotope		
2	effect-	PO1,PO2,PO3,PO6,P	СМ,Н,Н,
2	6 CO 4 Syllabus	POS	Levels
2	7 Introduction, Review of basic formulae, Dielectric constant and displacement vector	PO1, PO2	L,M
2	8 Different kinds of polarization-local electric field-Lorentz field-Clausius-Mossatti	PO1, PO2, PO3	L,M,H
2	 Expressions for electronic, ionic and dipolar polarizability, Perroelectricity and peizo electricity 	1P02,P04,P07,P012	M,H,M
3	0 1. Design of heads formula a charaffer the of momenta motion in the		
3	Review of dasic formulae -classification of magnetic materials	P01	L
3	2 Langevin meory of diamagnetism, para-magnetism and Ferromagnetism –domains White meta-side field decree (classical) Universities and Ferromagnetism (classical).	P01,P02,P03,P04	н,н
_	weiss molecular field theory (classical)-Heisenberg exchange interaction theory- Antiferro-		
- 3	3 magnetism and	PO2,PO3,PO4	H,M,M

	D	E
	PEOS	Levels
	PEO1	L
	PEO2, PEO3	M,H
	PEO1	M
	PEO2, PEO3	H,H
ł	PEO1, PEO2, PEO3	H,H,H
	PEO3	н
	PEOS	Levels
	PEO2, PEO3	M,M
	PEO2, PEO3	H,H
	PEO1, PEO2, PEO3	M,M,M
1	PEO2, PEO3	M,M
	PEO1, PEO2, PEO3	L,M,M
N	PEO3	н
	PEO1,PEO3	M,M
	PEO1,PEO3 PEOS	M,M Levels
	PEO1,PEO3 PEOS PEO1, PEO2	M,M Levels M,M
	PEO1,PEO3 PEOS PEO1, PEO2 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H
	PEO1,PEO3 PEO5 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1	M,M Levels M,M M,H,H H
	PEO1,PEO3 PEO5 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H H M,M,M
I H,H,F	PEO1,PEO3 PEO5 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H H M,M,M M,H,H
I H,H,F	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO2	M,M Levels M,M M,H,H H M,M,M M,H,H M
I H,H,F	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO2 PEO1 PEO2	M,M Levels M,M M,H,H H M,H,H M,H,H M
I H,H,F	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO2 PEO1,PEO2 PEO5	M,M Levels M,M M,H,H H M,M,M M,H,H M H,H
і Н,Н,І	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2 PEO1,PEO2 PEO1 PEO2 PEO3	M,M Levels M,M M,H,H H M,M,M M,H,H M H,H Levels LM M
I H,H,F	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H H M,H,H M,H,H H,H Levels L,M,M M H
I H,H,I 1,M	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2 PEO1,PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3	M,M Levels M,H,H H M,H,H M,H,H H,H Levels L,M,M M,H M H H
I H,H,F,F И,М	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H H M,M,M M,H,H Levels L,M,M M,H M,H,H
I H,H,H 1	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2 PEO1, PEO2, PEO3 PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3	M,M Levels M,M M,H,H H M,H,H M,H,H L,M,M M,H M,H,H M,H,H H
I H,H,I 1	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1 PEO1 PEO1 PEO2, PEO3	M,M Levels M,M M,H,H H M,H,H M,H,H Levels L,M,M M,H,H M,H,H H H
I H,H,F,F 4	PEO1,PEO3 PEO1, PEO2 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1, PEO2, PEO3 PEO1,PEO2 PEO1,PEO2, PEO3 PEO1, PEO2, PEO3 PEO1 PEO1 PEO2, PEO3	M,M Levels M,H,H H M,H,H M,H,H H,H Levels L,M,M M,H,H M,H,H H H

PO's and PEO's

F	G	н	1	J	K	L	М	N		0	Р	Q	R	S	Т	U	V
												-					
:01	Understa	nd and ide	ate the na	nomaterials	in field of	sensors, ca	atalysts, s	torage an	d ma	gnetic	materia	ls					
		Scores							_								
	L	M	H	Total Score	Total PO	Net Score	around		_		BLT	Nos	Score				
01	1*1	2*2	0*3	5	3	1.67	2	!	_		L	1		1			
202	0*1	2*2	2*3	10	4	2.50	3	l	_		М	7		2			
03	0*1	0*2	1*3	3	1	3.0	3		_		Н	7	1	3			
04	0*1	0*2	1*3	3	1	3.0	3	1	_								
05	0*1	1*2	2*3	8	3	2.7	3	1	_		L	M	Н	Total Sco	Total PEO	Net Score	around
06	0*1	1*2	0*3	2	1	2.0	2	!	PE	01	1*1	1*2	1*3	6	3	2.00	2
09	0*1	2*2	0*3	4	2	2.0	2	!	PE	02	0*1	1*2	2*3	8	3	2.67	3
012	0*1	0*2	1*3	3	1	3.0	3	1	PE	03	0*1	0*2	4*3	12	4	3.0	3
PEO1	Impact or	society	PO1	Basic Know	ledge, Law	of Causali	ty			A			В				
PEO2	Design, In	noation	PO2	Problem An	alysis				1	PO 1	Bas	sic Knowledg	ge, Law of	Causality			
PEO 3	Techically	feasible s	PO3	Design or d	evelopmer	it		-	2	PO 2	Pro	oblem Analys	is				
									3	PO 3	De	sign or devel	opment				
			PO4	Conduct or	investigat	ions for pro	oblems		4	PO 4	Co	nduct or inve	estigation	s for proble	ms		
			PO5	modern too	usage				5	PO 5	mo	odern tool us	age				
			PO6	The scientis	t and soci	ety			6	PO 6	The	e scientist an	d society				
			PO7	Environmen	t and Sust	ainablity			7	PO7	Env	vironment ar	nd Sustain	ablity			
			PO8	Ethics						107		in on include	ia sustain	ability			
			PO9	Individual a	nd Team v	work											
			PO10	Communica	tion				8	PO8	Eth	nics					
			PO 11	Project mar	agement a	and finance			9	PO9	Ind	lividual and T	eam wor	k			
			PO12	Lifelong lea	rning				10	PO10	Co	mmunicatio	1				
			1012	Tenerong rea					11	PO 11	Pro	oject manage	ement and	l finance	_		
									12	PO12	Life	elong learnin	g				
									13	PEO	Im	pact on socie	ety				
									14	PEO2	De	sign, Innoati	on				
									15	PEO 3	Teo	chically feasi	ble soluti	on			

_	5	10
- 1	1	
- 2	5	1
		1
		4
4	3	

BLOOMS TAXONOMY BASED ON QUESTION PAPER COMPETENCE LEVEL

	А	В	С	D	E	F	G	н	1	J	К	L		М	N	0	Р	Q	R		s	т	U	V	
5						BLO	OMS TAXON	1	2	2	2		2	2	2	3	4	4	2	4	4	5	!	5	5
6							QUESTION	5	5	5	5		5	5	5	10	10	10	10	10	10	5		5	5
7	QUESTION	Competen	ce Level of	f Question I	Paper																				
8	10	2																							
9	10	2																							
10	10	2					BLOC	OMS TAXON	QUESTION N	AAX MARK	S														
11	5	1						1	5																
12	5	5						2	5																
13							,	2	5																
14								2	5																
15								2	5																
10								2	10																
18									10																
19								4	10																
20								2	10																
21								4	10																
22								4	10																
23								5	5																
24								5	5																
25								5	5																
							А	В	C	D	E		F		G	Н	1								
						1	QUALITY	OF Questio	n Paper																
						2																			
						3	Marks	5		5	5	5		10	10		5	5							
						4	Quality	4		5	4	3		2	4		5	6							
						5	BIT	Δ.	F	Δ			R			F	F	0							
						6		^	L.	^			•			-	L.								
						7		Development																	
						/		Benchmar	Attainme	nt Levels															
						8				_															
						9	LEVEL	50 to 60 %	6 15	2															
						10		60 to 70%	18	3															
						11		70 +	2:	1															

CO1 Attainment with PO's and PEO's

1	A	В	C	D	E	F	G	Н	1	J	К	L	М	N	0	P	Q	R	S	Т	U	V
1	CO 1 Syllabus	POS	Levels	PEOS	Levels	CO 1	Understa	nd and id	eate the na	anomaterials i	n field of s	ensors, cata	lysts, storag	e and i	magnetic	materials						
2	Crystalline state - perio	odi PO1	L	PEO1	L		Scores					10										
3	The basis and crystal st	ru PO1,PO2	P M,M,M	PEO2, P	EO M,H		L	м	Н	Total Scor	Total PO	Net Score	around			BLT	Nos	Score				
4	fundamental types of la	ttic PO2,PO3	,P M,H,M	PEO1	м	PO1	1*1	2*2	0*3	5	3	3 1.67	2			L		1 :	Ę			
5	Elements of symmetry of	pe PO2,PO4	,Р Н,Н,М	PEO2, P	EO H,H	PO2	0*1	2*2	2*3	10	2	4 2.50	3			м		7 2	2			
6	X-ray diffraction: Scat	tte: PO1,PO5	, Р М, Н, <mark>М</mark> , Н	PEO1, P	ЕО Н,Н,Н	PO3	0*1	0*2	1*3	3	1	L 3.0	3			Н		7 3	3			
7	atomic scattering factor	, g PO2,PO5	н,н	PEO3	Н	PO4	0*1	0*2	1*3	3	1	L 3.0	3									
8						PO5	0*1	1*2	2*3	8	3	3 2.7	3			L	м	Н	Total So	Total PE	Net Scor	around
9						PO6	0*1	1*2	0*3	2	1	1 2.0	2		PEO1	1*1	1*2	1*3	6	3	2.00	2
10)					PO9	0*1	2*2	0*3	4	2	2 2.0	2		PEO2	0*1	1*2	2*3	8	3	2.67	3
11						PO12	0*1	0*2	1*3	3	1	1 3.0	3		PEO3	0*1	0*2	4*3	12	4	3.0	3

CO2 Attainment with PO's and PEO's

1	A	В	C	D	E	F	G	н	1	J	К	L	M
1	CO 2 Syllabus	POS	Levels	PEOS	Levels	1		Scores	8				
2	Free electron model, Electrons moving in one dimensional po	PO1, PO2	L,H	PEO2, PEO3	M,M		L (1)	M (2)	H (3)	Total Score	Total PO	Net Score	around
3	3-D potential well, quantum state and degeneracy, the density	PO1,PO2,PO4	M,H,M	PEO2, PEO3	н,н	PO1	3	1	0	5	4	1.25	2
4	Fermi-Dirac statistics, effect of temperature on Fermi distribution	PO2,PO4,PO12	H,M,M	PEO1, PEO2, PEO3	M,M,M	PO2	0	2	4	16	6	2.67	3
5	Electrical conductivity of metals, relaxation time and mean fr	PO1,PO2,PO4,PO5	L,M,M,M	PEO2, PEO3	M,M	PO3	0	2	1	7	3	2.3	3
6	Band theory of solids: Elementary ideas of formation of e	PO1,PO3,PO6	M,M,M	PEO1, PEO2, PEO3	L,M,M	PO4	0	3	0	6	3	2.0	2
7	Kronig-Penney model, number of states in a band, Energy gap	PO2,PO3,PO6,PO9	H,M,M,M	PEO3	н	PO5	0	1	0	2	1	2.0	2
	Insulators and intrinsic semiconductors.concept of holes,												
8	equation of motion for electrons and holes, effective mass of	PO1,PO2,PO3	L,M,H	PEO1,PEO3	M,M	PO6	0	2	0	4	2	2.0	2
9					-	PO9	0	1	0	2	1	2.0	2
10			Numbers			PO12	0	1	0	2	1	2.0	2
11		PO1		4						0	-		
12		PO2		6						0			
13		PO3		3			L (1)	M (2)	H (3)	Total Scor	Total PEC	Net Score	around
14		PO4		3		PEO1	1	1	0	3	3	1.00	1
15		PO5		1		PEO2	0	4	1	11	3	3.67	4
16		PO6		2		PEO3	0	5	2	16	4	4.0	3
17		PO9		1									
18		PO12		1									
19		PEO1		2									
20		PEO2		5									
21		PEO3		7									

CO3 Attainment with PO's and PEO's

1	А	В	C	D	E	F	G	Н	1	J	К	L	М	
1	CO 3 Syllabus	POS	Levels	PEOS	Levels			Scores						Ī
2	Introduction to sem	PO1, PO3	L,M	PEO1, PEO2	M,M		L (1)	M (2)	H (3)	Total Score	Total PO	Net Score	around	
3	Intrinsic and extrins	PO2,PO3,PO4	M,M,M	PEO1, PEO2, PEO3	M,H,H	PO1	3	1	0	5	6	0.83	2	
4	Ionization energies,	PO1,PO2,PO3	M,M,M	PEO1	H	PO2	0	2	4	16	5	3.20	3	
5	Conductivity-mobil	PO1,PO2,PO3,PO4	M,H,H,H	PEO1, PEO2, PEO3	M,M,M	PO3	C	2	1	7	7	1.0	3	
6	Superconductors:	PO1,PO2,PO3,PO5,PO6,PO12	M,M,M,H,I	PEO1, PEO2, PEO3	M,H,H	PO4	0	3	0	6	2	3.0	2	
7	Non-ideal supercon	PO1,PO3	M,M	PEO2	М	PO5	C	1	0	2	1	2.0	2	
8	heat capacity-	PO1,PO2,PO3,PO6,PO12	M,H,H,M,N	PEO1,PEO2	н,н	PO6	C	2	0	4	2	2.0	2	
9	1					PO9	0	0	0	0	0	#DIV/0!	0	
10			Numbers			PO12	C	1	0	2	2	1.0	2	
11		PO1	6											Ĺ
12		PO2	5				L (1)	M (2)	H (3)	Total Score	Total PEO	Net Score	around	Ĺ
13		PO3	7			PEO1	1	. 1	0	3	3	1.00	1	
14		PO4	2			PEO2	C	4	1	11	3	3.67	4	L
15		PO5	1			PEO3	C	5	2	16	4	4.0	3	L
16		PO6	2											Ĺ
17		PO9	0											Ĺ
18		PO12	2											Ĺ
19		PEO1	5											Ĺ
20		PEO2	6											ĺ
21		PEO3	3											

CO4 Attainment with PO's and PEO's

1	A	В	C	D	E	F	G	
1	CO 4 Syllabus	POS	Levels	PEOS	Levels			
2	Introduction, Review of basic formulae	PO1, PO2	L,M	PEO1, PEO2, PEO3	L,M,M		L (1)	М (
3	Different kinds of polarization-local el	PO1, PO2, PO3	L,M,H	PEO2, PEO3	M,H	PO1	3	
4	Expressions for electronic, ionic and d	PO2,PO4,PO7,PO12	M,H,M,H	PEO1, PEO2, PEO3	M,H,H	PO2	0	
5	Review of basic formulae -classificat	PO1	L	PEO1	Н	PO3	0	
6	Langevin theory of diamagnetism, para	PO1,PO2,PO3,PO4	H,H	PEO2, PEO3	н	PO4	0	
7	Weiss molecular field theory (classical)-Heisenberg exchange	PO2,PO3,PO4	H,M,M	PEO3	н	PO5	0	8
8						PO7	0	
9			Numbers			PO9	0	
10		PO1	4			PO12	0	
11		PO2	5					
12		PO3	3					
13		PO4	3					
14		PO5	0	1				
15		PO7	1					
16		PO9	0	(
17		PO12	1					